[PDF]
http://dx.doi.org/10.3952/lithjphys.52110
Open access
article / Atviros prieigos straipsnis
Lith.
J. Phys. 52, 10–18
(2012)
RECORDING
OF HOLOGRAPHIC GRATINGS
AND THEIR COHERENT SELF-ENHANCEMENT IN AN a-As2S3
FILM WITH A MINIMUM LIGHT INTENSITY MODULATION
A. Ozols, P. Augustovs, and D. Saharov
Faculty of Material Science and
Applied Chemistry, Riga Technical University, Azenes 14/24,
LV-1007
Riga, Latvia
E-mail: aozols@latnet.lv
Received 28 August 2011; revised 12 February 2012; accepted 12
March
2012
The
holographic grating recording
efficiency and the coherent self-enhancement efficiency of
gratings are
experimentally studied depending on the recording light
interference
fringe visibility in an a-As2S3 chalcogenide
film
in order to find the minimum visibility. The minimum fringe
visibility Mmin
= 3.6×10–4
is found, which is determined by the scattered light background.
In
this case the maximal diffraction efficiency ηmax =
0.05%
and the maximal self-enhancement factor ξmax = 5.0,
compared
to ηmax = 15% and ξmax = 12.3 in the optimal M = 1.0000 case. In the case
of
two-beam holographic grating recording the maximal diffraction
efficiency increases when M
is increased, whereas sensitivity decreases. A simple model, based
on
linear recording with the spatial light intensity distribution
governed
by M and including
intensity-dependent material photosensitivity and grating
relaxation,
is proposed to explain these results. In the case of coherent
self-enhancement both the maximal diffraction efficiency and
sensitivity increase with fringe visibility M. This can be explained by
the
fact that mechanical stress modulation during the initial grating
recording depending on M
is
followed by relaxational structural changes reinforcing the
coherent
self-enhancement effect. The developed approach may explain the
absence
of this effect in some azobenzene oligomer films.
Keywords: amorphous
chalcogenide films, holographic gratings, hologram self-enhancement,
interference fringe visibility
PACS: 42.40.Ht, 78.47.jj,
78.55.Qr
HOLOGRAFINIŲ
GARDELIŲ ĮRAŠYMAS IR
JŲ KOHERENTINIS SUSISTIPRINIMAS a-As2S3
PLONAJAME
SLUOKSNYJE MINIMALIOS ŠVIESOS INTENSYVUMO MODULIACIJOS SĄLYGOMIS
A. Ozols, P. Augustovs, D. Saharov
Rygos technikos universitetas,
Ryga,
Latvija
Siekiant
nustatyti minimalų kontrastą
eksperimentiškai tirta, kaip holografinių gardelių įrašymo ir jų
koherentinio susistiprinimo efektyvumas a-As2S3
chalkogenido sluoksnyje priklauso nuo įrašančios šviesos
interferencinių juostelių kontrasto. Gautas minimalus juostelių
kontrastas Mmin
=
3,6×10–4, kurį lemia išsklaidytos šviesos fonas. Šiuo
atveju
maksimalus difrakcijos efektyvumas ηmax = 0,05 %, o
maksimalus susistiprinimo koeficientas ξmax =5,0,
lyginant
su ηmax =15 % ir ξmax = 12,3 optimaliu M = 1,0000. Dvipluoščio
holografinių gardelių įrašymo metu maksimalus difrakcijos
efektyvumas
didėja didinant M, o
jautris
tada mažėja. Šiems rezultatams paaiškinti pasiūlytas paprastas
modelis,
pagįstas tiesiniu įrašymu, kai erdvinį šviesos intensyvumo
pasiskirstymą lemia M,
ir
įskaitantis nuo intensyvumo priklausantį medžiagos fotojautrį bei
gardelės relaksaciją. Koherentinio susistiprinimo atveju ir
maksimalus
difrakcijos efektyvumas, ir jautris didėja, kai didėja juostelių
kontrastas M. Tai
įvyksta dėl
to, kad mechaninio įtempio moduliaciją, gardelės įrašymo pradžioje
priklausančią nuo M,
keičia
relaksaciniai sandaros pokyčiai, lemiantys koherentinio
susistiprinimo
reiškinį. Siūloma interpretacija gali paaiškinti, kodėl šis
reiškinys
nestebimas kai kuriuose azobenzeno oligomeriniuose sluoksniuose.
References
/ Nuorodos
[1] J.W. Goodman, Introduction
to
Fourier Optics
(McGraw Hill, San Francisco, 1968),
http://www.amazon.co.uk/Introduction-Fourier-Physical-Quantum-Electronics/dp/007023776X/
[2] A. Ozols, O.
Salminen, and M. Reinfelde, Relaxational
self-enhancement of holographic gratings in amorphous As2S3
films, J. Appl. Phys. 75(7),
3326–3334
(1994),
http://dx.doi.org/10.1063/1.356141
[3] A. Ozols, N.
Nordman, O. Salminen, and P. Riihola, Holographic
recording in amorphous semiconductor films, Proc. SPIE 2968, 282–291 (1997),
http://dx.doi.org/10.1117/12.266849
[4] K. Schwartz, The
Physics of
Optical Recording (Springer Verlag,
Berlin, 1993),
http://www.amazon.co.uk/Physics-Optical-Recording-Kurt-Schwartz/dp/364275466X/,
http://dx.doi.org/10.1007/978-3-642-75464-7
[5] M. Protasova
and A. Ozols, Holographic properties of As2S3
films at high spatial frequencies, Latv. J. Phys. Tech. Sci. 3, 38–46 (1992)
[6] O.I. Shpotyuk,
Photostructural transformations in amorphous
chalcogenide semiconductors, Phys. Status Solidi B 183, 365–374 (1994),
http://dx.doi.org/10.1002/pssb.2221830203
[7] A.J.
Lowe, S.R. Elliot, and G.N. Greaves, Extended X-ray absorption
fine-structure
spectroscopy of photostructural changes in amorphous
arsenic chalcogenides, Phil. Mag. B 54(6),
483–490 (1986),
http://dx.doi.org/10.1080/13642818608236864
[8] S. Matsuoka, Relaxation
Phenomena in Polymers (Hanser, Munich, 1992),
http://www.amazon.co.uk/Relaxation-Phenomena-Polymers-Shiro-Matsuoka/dp/3446171118/
[9] J. Teteris,
Relaxation of optical properties in amorphous As2S3
films, Latv. J. Phys. Tech. Sci. 2,
55–60 (1992) [in
Russian]
[10] A. Ozols, Dm.
Saharovs, and M. Reinfelde, Holographic recording in
amorphous As2S3 films at 633 nm, J.
Non-Cryst.
Solids 352, 2652–2656
(2006),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.072
[11] T.K. Gaylord,
T.A. Rabson, F.K. Tittel, and C.R. Quick,
Self-enhancement of LiNbO3 holograms, J. Appl.
Phys. 44(2), 896–897
(1973),
http://dx.doi.org/10.1063/1.1662282
[12] J. Aleksejeva
and J. Teteris, Volume grating recording in
acrylate-based photopolymers, Latv. J. Phys. Tech. Sci. 47(3), 13–22
(2010),
http://dx.doi.org/10.2478/v10047-010-0010-5
[13] K. Shvarts, A.
Ozols, P. Augustov, and M.
Reinfelde,
Photorefraction and self-enhancement of holograms in LiNbO3
and LiTaO3 crystals,
Ferroelectrics 75(1–2),
231–249 (1987),
http://dx.doi.org/10.1080/00150198708008225
[14] F. Rickermann,
S. Riehemann, K. Buse, D. Dirksen, and G. von
Bally, Diffraction efficiency enhancement of holographic gratings in
Bi12Ti0.76V0.24O20
crystals
after recording, J. Opt. Soc. Am. B 13(10),
2299–2305 (1996),
http://dx.doi.org/10.1364/JOSAB.13.002299
[15] T. Keinonen
and R. Grzymala, Dark self-enhancement in dichromated
poly(vinyl alcohol)
gratings: a detailed study, Appl. Opt. 38(35),
7214–7221 (1999),
http://dx.doi.org/10.1364/AO.38.007214
[16] O. Salminen,
A. Ozols, P. Riihola, and P. Mönkkönen, Intensity
threshold for holographic recording in amorphous As2S3
films, J. Appl. Phys. 78(2),
718–722
(1995),
http://dx.doi.org/10.1063/1.360331
[17] A. Ozols and
K. Shvarts, Photosensitivity of amorphous
semiconductor As-S and As-Se films under CW, nanosecond and
picosecond
laser irradiation, Cryst. Latt. Defects Amorph. Mater. 17(112), 235–239 (1987).
[18] M. Reinfelde
and J. Teteris, Holographic self-enhancement in
As–S–Se films, in: Abstracts
of the
24th Scientific Conference, Institute of Solid State Physics,
University of Latvia, February 20–22, 2008, ed. A. Krumins
(Institute of Solid State Physics, University of Latvia, Riga, 2008)
p.
46
[19] R.J. Collier,
Ch.B. Burckhardt, and L.H. Lin, Optical
Holography
(Academic Press,
New York, 1971),
http://www.amazon.co.uk/Optical-Holography-Robert-Jacob-Collier/dp/012181050X/
[20] H. Kogelnik,
Coupled wave theory for thick hologram gratings, Bell
Syst. Tech.
J. 48(9),
2909–2947 (1969),
http://www.alcatel-lucent.com/bstj/vol48-1969/articles/bstj48-9-2909.pdf
[21] T. Suhara, H.
Nishihara, and J. Koyama, Hologram recording in
amorphous semiconductor films, Electronics and Communications in
Japan
C 59(7), 116–122 (1976)
[22] D. Saharov and
A. Ozols, DFWM of focused laser beams in a-As2S3
and azobenzene oligomer films, J. Mater. Sci. Mater. Electron. 20(S1), 395–399 (2008),
http://dx.doi.org/10.1007/s10854-008-9639-8