[PDF]
http://dx.doi.org/10.3952/lithjphys.52111
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52, 24–29
(2012)
SURFACE-FRACTURE-RELATED
PHOTOLUMINESCENCE OF CdMnTe CRYSTALS
R. Brazisa, A. Selskisa, B. Kuklińskib,
and M. Grinbergb
aCentre for Physical
Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius,
Lithuania
E-mail: brazis@pfi.lt; aselskis@ktl.mii.lt
bExperimental Physics
Institute of the University of Gdańsk, Wita Stwosza 57, 80-952
Gdańsk,
Poland
E-mail: fizmgr@univ.gda.pl
Received 29 August 2011; revised 28 February 2011; accepted 1
March 2011
Enhanced
photoluminescence from
sub-wavelength crystallites attached to the fractured surface of
cleaved host crystals, and the transfer of emitted light to the
dark
side of macroscopically thick absorbing samples of Cd1-xMnxTe with x = 0.2 is reported. The
conventional model based on Kirchhoff’s law of radiation is found
to
fail to describe the experimental photoluminescence line and its
red
shift relative to the optical absorption, and a more adequate
novel
theoretical model implying population inversion is proposed.
Keywords: CdMnTe,
photoluminescence, optical absorption, electron microscopy,
nanoparticles
PACS: 78.40.Fy, 78.20.Ci,
78.55.Et, 78.67.Bf
SKELTO
PAVIRŠIAUS SĄLYGOTA CdMnTe
KRISTALŲ FOTOLIUMINESCENCIJA
R. Brazisa, A. Selskisa, B. Kuklińskib,
and M. Grinbergb
aFizinių ir
technologijos
mokslų centras, Vilnius, Lietuva
bGdansko universiteto
Eksperimentinės fizikos institutas, Gdanskas, Lenkija
Eksperimentiškai
tiriant skelto Cd1-xMnxTe (x = 0,2) monokristalo paviršiaus
fotoliuminescenciją nustatyta, kad švytėjimas sustiprėja kiekvieną
kartą, kai žadinantis Ar lazerio spindulys nutaikomas į kurį nors
iš
aibės kristalitų, kuriais paviršius pasidengia skaldymo metu.
Ryškus
švytėjimas aptiktas ir tamsiojoje (nesužadintoje) pusėje, šviesai
praėjus per storą neskaidrų kristalą. Elektroniniu mikroskopu
paviršiuje buvo pastebėti kristalitai didesni už dešimtį
nanometrų.
Parodyta, kad įprastinis fotoliuminescencijos modelis, pagrįstas
Kirchhoff’o spinduliavimo dėsniu, neaprašo eksperimentinio spektro
smailės raudonojo poslinkio nuo sugerties smailės. Eksperimentą
paaiškina naujas modelis, grindžiamas dviejų lygmenų normalios ir
apgrąžos užpildos teorija.
References
/ Nuorodos
[1] N.T. Khoi and
J.A. Gaj, Phys. Status Solidi B 83,
K133 (1977),
http://dx.doi.org/10.1002/pssb.2220830244
[2] А.V. Коmarov,
S.М. Ryabchenko, О.V. Теrletskii, I.I. Zheru, and
R.D. Ivanchuk, J. Exp. Theor. Phys. 73,
608 (1977) [in Russian]
[3] J.A. Gaj, R.R.
Gałązka, and M. Nawrocki, Solid State Commun. 25, 193 (1978),
http://dx.doi.org/10.1016/0038-1098(78)91477-1
[4] R.A. Abreu, J.
Stankiewicz, and W. Giriat, Phys. Status Solidi A 75, K153 (1980),
http://dx.doi.org/10.1002/pssa.2210750254
[5] R.R. Gałązka,
S. Nagata, and P.H. Keesom, Phys. Rev. B 22, 3344 (1980),
http://dx.doi.org/10.1103/PhysRevB.22.3344
[6] J.K. Furdyna,
J. Appl. Phys. 53,
7637 (1982),
http://dx.doi.org/10.1063/1.330137
[7] J.K. Furdyna,
J. Appl. Phys. 64,
R29 (1988),
http://dx.doi.org/10.1063/1.341700
[8] K. Morimoto, K.
Takagi, and K. Matsubara,
United
States
Patent
4789500, issued
12.06.1988
[9] Y. Tomita, H.
Oda, and M. Okuda,
United
States
Patent 5245465,
issued 09.14.1993
[10] M. Yamanishi
and H. Oda,
Patent
Document
Number CA 2036759 C,
issued 26.07.1994, Canadian Patents Database
[11] V. Zayets,
M.C. Debnath, and K. Ando, Appl. Phys. Lett. 84, 565 (2004),
http://dx.doi.org/10.1063/1.1644339
[12] Y. Hwang,
S.-S. Chung, and Y. Um, Phys. Status Solidi C 4, 4453 (2007),
http://dx.doi.org/10.1002/pssc.200777156
[13] J.A. Gaj, in: Semiconductors
and Semimetals,
Vol. 25 (Academic Press Inc., New York, 1988)
pp. 296–331,
http://dx.doi.org/10.1016/S0080-8784(08)62423-0
[14] R. Brazis, R.
Narkowicz, L. Safonova, and T. Wojtowicz, in: Optical
Properties of Semiconductor
Nanostructures,
eds. M.L. Sadowski, M. Potemski, and M.
Grynberg, NATO Sci. Ser. 3 – High Technol. 81, 315 (2000),
http://www.springer.com/materials/book/978-0-7923-6316-3
[15] W.
Dobrowolski, J. Kossut, and T. Story, Handbook
of Magnetic Materials,
Vol. 15, ed. K.H.J. Bushow (Elsevier Science B.V., Amsterdam, 2003)
pp.
289–378,
http://www.amazon.co.uk/Handbook-Magnetic-Materials-15-Buschow/dp/0444548459/
[16] T. Dietl, Nat.
Mater. 9,
965 (2010),
http://dx.doi.org/10.1038/nmat2898
[17] A. Hossain, Y.
Cui, A.E. Bolotnikov, G.S. Camarda, G. Yang, D.
Kochanowska, M.
Witkowska-Baran, A. Mycielski, and R.B. James, J.
Electron. Mater. 38, 1593
(2009),
http://dx.doi.org/10.1007/s11664-009-0780-9
[18] A. Balzarotti,
N. Motta, A. Kisiel, M. Zimnal-Starnawska, M.T.
Czyżyk, and M. Podgórny, Phys. Rev. B 31,
7526 (1985),
http://dx.doi.org/10.1103/PhysRevB.31.7526
[19] M.P. Vecchi,
W. Giriat, and L. Videla, Appl. Phys. Lett. 38, 99 (1981),
http://dx.doi.org/10.1063/1.92270
[20] M.M. Moriwaki,
W.M. Becker, W. Gebhardt, and R.R. Galazka, Phys.
Rev. B 26, 3165 (1982),
http://dx.doi.org/10.1103/PhysRevB.26.3165
[21] E. Müller and
W. Gebhardt, J. Lumin. 31–32,
479 (1984),
http://dx.doi.org/10.1016/0022-2313(84)90333-8
[22] D. Leinen,
Phys. Rev. B 55,
6975 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.6975
[23] Y. Hwang,
Y. Um, and H. Park, J. Korean Phys. Soc. 58, 1312 (2011),
http://dx.doi.org/10.3938/jkps.58.1312
[24] Y. Hwang, Y.
Um, H. Kim, G. Jeen, and H.
Park, J. Korean Phys. Soc. 34,
405 (1999),
http://www.kps.or.kr/jkps/downloadPdf.asp?articleuid={083CE0AE-D98E-4F37-B591-D5B8B428462D},
http://dx.doi.org/10.3938/jkps.34.405
[25] S.
Venugopalan, A. Petrou, R.R. Gałązka, A.K. Ramdas, and S.
Rodriguez, Phys. Rev. B 25,
2681 (1982),
http://dx.doi.org/10.1103/PhysRevB.25.2681
[26] I. Caraman,
G.I. Rusu, and L. Leontie, J. Optoelectron. Adv. Mater. 8, 107 (2006),
http://joam.inoe.ro/arhiva/pdf8_1/Caraman.pdf
[27] R. Brazis, in:
COST
MP0702
Managing Committee and Working Group Meeting “Towards Functional
Sub-Wavelength Photonic Structures” (International Laser
Center
of Bratislava, Slovak Republic, 26–28 Oct 2008) p. 22
[28] R. Brazis, in:
12th
ICTON,
27 June–1 July 2010, Munich, Germany, Conf. Proc. (IEEE 2010 online)
p.
4,
http://dx.doi.org/10.1109/ICTON.2010.5549283
[29] R. Brazis, in:
13th
ICTON,
26–30 June 2011, Stockholm, Sweden, Conf. Proc. (IEEE 2011 online)
p.
4,
http://dx.doi.org/10.1109/ICTON.2011.5971090
[30] R. Brazis and
J. Kossut, Solid State Commun. 122,
73 (2002),
http://dx.doi.org/10.1016/S0038-1098(02)00064-9
[31] L. Safonova,
R. Brazis, and R. Narkowicz, Lith. J. Phys. 44, 421 (2004),
http://dx.doi.org/10.3952/lithjphys.44602
[32] W. van
Roosbroeck and W. Shockley, Phys Rev. 94,
1558 (1954),
http://dx.doi.org/10.1103/PhysRev.94.1558
[33] B.I. Stepanov,
Dokl. Akad. Nauk BSSR 112,
839
[in Russian,
English
translation in: Doklady
Sov. Phys. 2,
81 (1957)]
[34] R. Kubo, J.
Phys. Soc. Jpn. 12,
570 (1957),
http://dx.doi.org/10.1143/JPSJ.12.570
[35] P.C. Martin
and J. Schwinger, Phys. Rev. 115,
1342 (1959),
http://dx.doi.org/10.1103/PhysRev.115.1342
[36] R.S. Brazis
and J.K. Furdyna, Phys. Rev. B 16,
3273 (1977),
http://dx.doi.org/10.1103/PhysRevB.16.3273
[37] R.S. Brazis,
J.K. Furdyna, and J.K. Požela, Phys. Status Solidi A 54, 11 (1979),
http://dx.doi.org/10.1002/pssa.2210540102
[38] L.D. Landau,
E.M. Lifshitz, Electrodynamics
of Continuous Media (Moscow, 1959) pp.
42–43 [in Russian]
[39] D.W. Berreman,
Phys. Rev. 163,
855 (1967),
http://dx.doi.org/10.1103/PhysRev.163.855