[PDF]     http://dx.doi.org/10.3952/lithjphys.52111

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 2429 (2012)


SURFACE-FRACTURE-RELATED PHOTOLUMINESCENCE OF CdMnTe CRYSTALS
R. Brazisa, A. Selskisa, B. Kuklińskib, and M. Grinbergb
aCentre for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: brazis@pfi.lt; aselskis@ktl.mii.lt
bExperimental Physics Institute of the University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland
E-mail: fizmgr@univ.gda.pl

Received 29 August 2011; revised 28 February 2011; accepted 1 March 2011

Enhanced photoluminescence from sub-wavelength crystallites attached to the fractured surface of cleaved host crystals, and the transfer of emitted light to the dark side of macroscopically thick absorbing samples of Cd1-xMnxTe with x = 0.2 is reported. The conventional model based on Kirchhoff’s law of radiation is found to fail to describe the experimental photoluminescence line and its red shift relative to the optical absorption, and a more adequate novel theoretical model implying population inversion is proposed.
Keywords: CdMnTe, photoluminescence, optical absorption, electron microscopy, nanoparticles
PACS: 78.40.Fy, 78.20.Ci, 78.55.Et, 78.67.Bf


SKELTO PAVIRŠIAUS SĄLYGOTA CdMnTe KRISTALŲ FOTOLIUMINESCENCIJA
R. Brazisa, A. Selskisa, B. Kuklińskib, and M. Grinbergb
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bGdansko universiteto Eksperimentinės fizikos institutas, Gdanskas, Lenkija

Eksperimentiškai tiriant skelto Cd1-xMnxTe (x = 0,2) monokristalo paviršiaus fotoliuminescenciją nustatyta, kad švytėjimas sustiprėja kiekvieną kartą, kai žadinantis Ar lazerio spindulys nutaikomas į kurį nors iš aibės kristalitų, kuriais paviršius pasidengia skaldymo metu. Ryškus švytėjimas aptiktas ir tamsiojoje (nesužadintoje) pusėje, šviesai praėjus per storą neskaidrų kristalą. Elektroniniu mikroskopu paviršiuje buvo pastebėti kristalitai didesni už dešimtį nanometrų. Parodyta, kad įprastinis fotoliuminescencijos modelis, pagrįstas Kirchhoff’o spinduliavimo dėsniu, neaprašo eksperimentinio spektro smailės raudonojo poslinkio nuo sugerties smailės. Eksperimentą paaiškina naujas modelis, grindžiamas dviejų lygmenų normalios ir apgrąžos užpildos teorija.


References / Nuorodos

[1] N.T. Khoi and J.A. Gaj, Phys. Status Solidi B 83, K133 (1977),
http://dx.doi.org/10.1002/pssb.2220830244
[2] А.V. Коmarov, S.М. Ryabchenko, О.V. Теrletskii, I.I. Zheru, and R.D. Ivanchuk, J. Exp. Theor. Phys. 73, 608 (1977) [in Russian]
[3] J.A. Gaj, R.R. Gałązka, and M. Nawrocki, Solid State Commun. 25, 193 (1978),
http://dx.doi.org/10.1016/0038-1098(78)91477-1
[4] R.A. Abreu, J. Stankiewicz, and W. Giriat, Phys. Status Solidi A 75, K153 (1980),
http://dx.doi.org/10.1002/pssa.2210750254
[5] R.R. Gałązka, S. Nagata, and P.H. Keesom, Phys. Rev. B 22, 3344 (1980),
http://dx.doi.org/10.1103/PhysRevB.22.3344
[6] J.K. Furdyna, J. Appl. Phys. 53, 7637 (1982),
http://dx.doi.org/10.1063/1.330137
[7] J.K. Furdyna, J. Appl. Phys. 64, R29 (1988),
http://dx.doi.org/10.1063/1.341700
[8] K. Morimoto, K. Takagi, and K. Matsubara,
United States Patent 4789500, issued 12.06.1988
[9] Y. Tomita, H. Oda, and M. Okuda,
United States Patent 5245465, issued 09.14.1993
[10] M. Yamanishi and H. Oda,
Patent Document Number CA 2036759 C, issued 26.07.1994, Canadian Patents Database
[11] V. Zayets, M.C. Debnath, and K. Ando, Appl. Phys. Lett. 84, 565 (2004),
http://dx.doi.org/10.1063/1.1644339
[12] Y. Hwang, S.-S. Chung, and Y. Um, Phys. Status Solidi C 4, 4453 (2007),
http://dx.doi.org/10.1002/pssc.200777156
[13] J.A. Gaj, in: Semiconductors and Semimetals, Vol. 25 (Academic Press Inc., New York, 1988) pp. 296–331,
http://dx.doi.org/10.1016/S0080-8784(08)62423-0
[14] R. Brazis, R. Narkowicz, L. Safonova, and T. Wojtowicz, in: Optical Properties of Semiconductor Nanostructures, eds. M.L. Sadowski, M. Potemski, and M. Grynberg, NATO Sci. Ser. 3 – High Technol. 81, 315 (2000),
http://www.springer.com/materials/book/978-0-7923-6316-3
[15] W. Dobrowolski, J. Kossut, and T. Story, Handbook of Magnetic Materials, Vol. 15, ed. K.H.J. Bushow (Elsevier Science B.V., Amsterdam, 2003) pp. 289–378,
http://www.amazon.co.uk/Handbook-Magnetic-Materials-15-Buschow/dp/0444548459/
[16] T. Dietl, Nat. Mater. 9, 965 (2010),
http://dx.doi.org/10.1038/nmat2898
[17] A. Hossain, Y. Cui, A.E. Bolotnikov, G.S. Camarda, G. Yang, D. Kochanowska, M. Witkowska-Baran, A. Mycielski, and R.B. James, J. Electron. Mater. 38, 1593 (2009),
http://dx.doi.org/10.1007/s11664-009-0780-9
[18] A. Balzarotti, N. Motta, A. Kisiel, M. Zimnal-Starnawska, M.T. Czyżyk, and M. Podgórny, Phys. Rev. B 31, 7526 (1985),
http://dx.doi.org/10.1103/PhysRevB.31.7526
[19] M.P. Vecchi, W. Giriat, and L. Videla, Appl. Phys. Lett. 38, 99 (1981),
http://dx.doi.org/10.1063/1.92270
[20] M.M. Moriwaki, W.M. Becker, W. Gebhardt, and R.R. Galazka, Phys. Rev. B 26, 3165 (1982),
http://dx.doi.org/10.1103/PhysRevB.26.3165
[21] E. Müller and W. Gebhardt, J. Lumin. 31–32, 479 (1984),
http://dx.doi.org/10.1016/0022-2313(84)90333-8
[22] D. Leinen, Phys. Rev. B 55, 6975 (1997),
http://dx.doi.org/10.1103/PhysRevB.55.6975
[23] Y. Hwang, Y. Um, and H. Park, J. Korean Phys. Soc. 58, 1312 (2011),
http://dx.doi.org/10.3938/jkps.58.1312
[24] Y. Hwang, Y. Um, H. Kim, G. Jeen, and H. Park, J. Korean Phys. Soc. 34, 405 (1999),
http://www.kps.or.kr/jkps/downloadPdf.asp?articleuid={083CE0AE-D98E-4F37-B591-D5B8B428462D}
http://dx.doi.org/10.3938/jkps.34.405
[25] S. Venugopalan, A. Petrou, R.R. Gałązka, A.K. Ramdas, and S. Rodriguez, Phys. Rev. B 25, 2681 (1982),
http://dx.doi.org/10.1103/PhysRevB.25.2681
[26] I. Caraman, G.I. Rusu, and L. Leontie, J. Optoelectron. Adv. Mater. 8, 107 (2006),
http://joam.inoe.ro/arhiva/pdf8_1/Caraman.pdf
[27] R. Brazis, in: COST MP0702 Managing Committee and Working Group Meeting “Towards Functional Sub-Wavelength Photonic Structures” (International Laser Center of Bratislava, Slovak Republic, 26–28 Oct 2008) p. 22
[28] R. Brazis, in: 12th ICTON, 27 June–1 July 2010, Munich, Germany, Conf. Proc. (IEEE 2010 online) p. 4,
http://dx.doi.org/10.1109/ICTON.2010.5549283
[29] R. Brazis, in: 13th ICTON, 26–30 June 2011, Stockholm, Sweden, Conf. Proc. (IEEE 2011 online) p. 4,
http://dx.doi.org/10.1109/ICTON.2011.5971090
[30] R. Brazis and J. Kossut, Solid State Commun. 122, 73 (2002),
http://dx.doi.org/10.1016/S0038-1098(02)00064-9
[31] L. Safonova, R. Brazis, and R. Narkowicz, Lith. J. Phys. 44, 421 (2004),
http://dx.doi.org/10.3952/lithjphys.44602
[32] W. van Roosbroeck and W. Shockley, Phys Rev. 94, 1558 (1954),
http://dx.doi.org/10.1103/PhysRev.94.1558
[33] B.I. Stepanov, Dokl. Akad. Nauk BSSR 112, 839 [in Russian, English translation in: Doklady Sov. Phys. 2, 81 (1957)]
[34] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957),
http://dx.doi.org/10.1143/JPSJ.12.570
[35] P.C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959),
http://dx.doi.org/10.1103/PhysRev.115.1342
[36] R.S. Brazis and J.K. Furdyna, Phys. Rev. B 16, 3273 (1977),
http://dx.doi.org/10.1103/PhysRevB.16.3273
[37] R.S. Brazis, J.K. Furdyna, and J.K. Požela, Phys. Status Solidi A 54, 11 (1979),
http://dx.doi.org/10.1002/pssa.2210540102
[38] L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Moscow, 1959) pp. 42–43 [in Russian]
[39] D.W. Berreman, Phys. Rev. 163, 855 (1967),
http://dx.doi.org/10.1103/PhysRev.163.855