[PDF]
http://dx.doi.org/10.3952/lithjphys.52112
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52,
44–49 (2012)
SIMULATION
OF TRAFFIC-RELATED
AEROSOL DISPERSION
V. Špakauskas and D. Melichov
Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223
Vilnius, Lithuania
E-mail: valdas.spakauskas@vgtu.lt
Received 27 October 2011; revised 28 February 2012; accepted 1
March
2012
This
paper presents a quasi-empirical
model of the distribution of pollutant particles along the
roadway. By
modelling the source of the pollutant as a cut-off cylinder we
assume
that aerosol particles (of 0.3–15 μm in diameter) are distributed
according to the Gaussian law both along the vertical and
horizontal
axes. A cross wind translates the pollutant cloud away from the
road
and the particles are being influenced by gravity, particle
buoyancy
and thermal plume rise effects. The obtained pollutant
concentration
function coincides well with the experimental data obtained by Zhu
et
al. (2011), Grigalavičienė and Rutkovienė (2006), and Zechmeister
et
al. (2005).
Keywords: aerosol
particles,
Gaussian distribution, modelling, road dust, dispersion, roadside
PACS: 92.60.Sz, 91.62.Rt,
92.60.Mt, 91.67.gp
TRANSPORTO
SUKELTŲ AEROZOLIŲ
DALELIŲ SKLAIDOS MODELIAVIMAS
V. Špakauskas, D. Melichov
Vilniaus Gedimino technikos
universitetas, Vilnius, Lietuva
Darbe
pasiūlytas kvaziempirinis
modelis, skirtas didesnio kaip 0,3 μm skersmens dalelių sklaidai
pakelėse modeliuoti. Modeliuojant taršos šaltinį kaip nupjautinį
cilindrą laikome, kad aerozolių dalelės (0,3–15 μm diametro)
taršos
šaltinyje vertikalia ir horizontalia kryptimis pasiskirsto pagal
Gauso
dėsnį. Pučiant vėjui, kurio kryptis statmena keliui, dulkių
debesis yra
nešamas tolyn nuo kelio, o aerozolio dalelės yra veikiamos
gravitacijos, dalelių plūdrumo ir terminio teršalų fakelo kilimo
efektų. Gauta teršalų koncentracijos kaita transporto magistralės
šalikelėse sutampa su eksperimentiniais matavimais (Zhu ir kt.,
2011;
Grigalavičienė ir Rutkovienė, 2006; Zechmeister ir kt., 2005).
References
/ Nuorodos
[1] J.A. Markus and
A.B. McBratney, An urban soil study: heavy metals
in Glebe, Australia, Aust. J. Soil Res. 34, 453–465 (1996),
http://dx.doi.org/10.1071/SR9960453
[2] W. Wilcke, S.
Muller, N. Kanchanakool, and W. Zech, Urban soil
contamination in Bangkok: heavy metal and aluminium portioning in
topsoils, Geoderma 86,
211–228
(1998),
http://dx.doi.org/10.1016/S0016-7061(98)00045-7
[3] J.E. Ferguson
and N.D. Kim, Trace elements in street and house dusts:
source and speciation, Sci. Total Environ. 100, 125–150 (1991),
http://dx.doi.org/10.1016/0048-9697(91)90376-P
[4] M.S. Akhter and
I.M. Madany, Heavy metal in street and house dust
in Bahrain, Water Air Soil Pollut. 66,
111–119 (1993),
http://dx.doi.org/10.1007/BF00477063
[5] S.M. Al-Shayeb
and M.R.D. Seaward, Heavy metal content of roadside
soils along ring road in Riyadh (Saudi Arabia), Asian J. Chem. 13, 407–423 (2001),
http://www.asianjournalofchemistry.co.in/User/SearchArticle.aspx?Volume=13&Issue=2&Article=13_2_6&Criteria=
[6] Y. Nakamoto,
Rapid determination of arsenic in thermally cracked
gasoline by graphite-furnace AAS, Bunseki Kagaku 49, 43–47 (2000) [in
Japanese],
http://dx.doi.org/10.2116/bunsekikagaku.49.43
[7] L. Liang, M.
Horvat, and P. Danilchik, A novel analytical method
for determination of picogram levels of total mercury in gasoline
and
other petroleum products, Sci. Total Environ. 187, 57–64 (1996),
http://dx.doi.org/10.1016/0048-9697(96)05129-7
[8] C. Samara and
D. Voutsa, Size distribution of airborne particulate
matter and associated heavy metals in the roadside environment,
Chemosphere 59(8),
1197–1206
(2005),
http://dx.doi.org/10.1016/j.chemosphere.2004.11.061
[9] A.
Christoforidis and N. Stamatis, Heavy metal contamination in
street dust and roadside soil along the major national road in
Kavala’s
region, Greece, Geoderma 151,
257–263 (2009),
http://dx.doi.org/10.1016/j.geoderma.2009.04.016
[10] D. Podnar, D.
Koračin, and A. Panorska, Application of artificial
neural networks to modeling the transport and dispersijon of tracers
in
complex terrain, Atmos. Environ. 36(3),
561–570
(2002),
http://dx.doi.org/10.1016/S1352-2310(01)00446-0
[11] B. Fisher,
Fuzzy environmental decision-making: application to air
pollution, Atmos. Environ. 37(14),
1865–1877
(2003),
http://dx.doi.org/10.1016/S1352-2310(03)00028-1
[12] D. Oettl, J.
Kukkonen, R.A. Almbauer, P.J. Sturm, M. Pohjola, and
J. Härkönen, Evaluation of a Gaussian and a Lagrangian model against
a
roadside data set, with emphasis on low wind speed conditions,
Atmos.
Environ. 35(12), 2123–2132
(2001),
http://dx.doi.org/10.1016/S1352-2310(00)00492-1
[13] S.S. Rasa, R.
Avila, and J. Cervantes, A 3-D Lagrangian stochastic
model for the meso-scale atmospheric dispersion applications. Nucl.
Eng. Des. 208(1), 15–28,
(2001),
http://dx.doi.org/10.1016/S0029-5493(01)00357-0
[14] A.G. Clarke,
L.A. Robertson, R.S. Hamilton, and B. Gorbunov, A
Lagrangian model of the evolution of the particulate size
distribution
of vehicular emissions, Sci. Total Environ. 334–335, 197–206 (2004),
http://dx.doi.org/10.1016/j.scitotenv.2004.04.038
[15] F. Pasquill,
The estimation of the dispersion of windborne
material, Meteorol. Mag. 90,
33–49 (1961)
[16] F.A. Gifford,
Jr., Consequences of effluent releases, Nucl. Safety 17(1), 68–86 (1976)
[17] P. Neofytou,
A.G. Venetsanos, S. Rafailidis, and J.G. Bartzis,
Numerical investigation of the pollution dispersion in an urban
street
canyon, Environ. Model. Software 21,
525–532 (2006),
http://dx.doi.org/10.1016/j.envsoft.2004.08.012
[18] D.R. Parsons,
G.F.S. Wiggs, I.J. Walker, R.I. Ferguson, and B.G.
Garvey, Numerical modelling of airflow over an idealised transverse
dune, Environ. Model. Software 19,
153–162 (2004),
http://dx.doi.org/10.1016/S1364-8152(03)00117-8
[19] K.S. Rao, R.L.
Gunter, J.R. White, and R.P. Hosker, Turbulence and
dispersion modeling near highways, Atmos. Environ. 36, 4337–4346 (2002),
http://dx.doi.org/10.1016/S1352-2310(02)00353-9
[20] B. Martinėnas
and V. Špakauskas, Simulation of traffic pollution
dispersion near roadways, Lith. J. Phys. 50(2), 255–260 (2010),
http://dx.doi.org/10.3952/lithjphys.50212
[21] A. Micallef
and J.J. Colls, Variation in airborne particulate
matter concentration over the first three metres from ground in an
urban street canyon: implication for human exposure, Atmos. Environ.
32(21), 3795–3799 (1998),
http://dx.doi.org/10.1016/S1352-2310(98)00076-4
[22] J.J. Colls and
A. Micallef, Measured and modelled concentrations
and vertical profiles of airborne particulate matter within the
boundary layer of a street canyon, Sci. Total Environ. 235, 221–233 (1999),
http://dx.doi.org/10.1016/S0048-9697(99)00194-1
[23] S.-K. Park,
S.-D. Kim, and H. Lee, Dispersion characteristics of
vehicle emission in urban street canyon, Sci. Total Environ. 323, 263–271 (2004),
http://dx.doi.org/10.1016/j.scitotenv.2003.09.032
[24] S. Weber, W.
Kuttler, and K. Weber, Flow characteristics and
particle mass and number concentration variability within a busy
urban
street canyon, Atmos. Environ. 40,
7565–7578 (2006),
http://dx.doi.org/10.1016/j.atmosenv.2006.07.002
[25] P. Kumar, P.
Fennell, D. Langley, and R. Britter,
Pseudo-simultaneous measurements for the vertical variation of
coarse,
fine and ultrafine particles in an urban street canyon, Atmos.
Environ.
42, 4304–4319 (2008),
http://dx.doi.org/10.1016/j.atmosenv.2008.01.010
[26] I. Kanda, K.
Uehara, Y. Yamao, Y. Yoshikawa, and T. Morikawa, A
wind-tunnel
study on exhaust gas dispersion from road vehicles–Part I: Velocity
and
concentration fields behind single vehicles, J. Wind Eng. Ind.
Aerodyn.
94, 639–658 (2006),
http://dx.doi.org/10.1016/j.jweia.2005.12.003
[27] I. Kanda, K.
Uehara, Y. Yamao, Y. Yoshikawa, and T. Morikawa, A
wind-tunnel
study on exhaust-gas
dispersion from road vehicles–Part II: Effect of vehicle queues, J.
Wind Eng. Ind. Aerodyn. 94,
659–673 (2006),
http://dx.doi.org/10.1016/j.jweia.2006.06.002
[28] Z. Ning, C.S.
Cheung, Y. Lu, M.A. Liu, and W.T. Hung, Experimental
and numerical study of the dispersion of motor vehicle pollutants
under
idle condition, Atmos. Environ. 39(40),
7880–7893
(2005),
http://dx.doi.org/10.1016/j.atmosenv.2005.09.020
[29] P.E. Benson,
Modifications to the Gaussian vertical dispersion
parameter, σz,
near roadways, Atmos.
Environ. 16(6), 1399–1405
(1982),
http://dx.doi.org/10.1016/0004-6981(82)90060-9
[30] Y. Zhu and
W.C. Hinds, Predicting particle number concentrations
near a highway based on vertical concentration profile, Atmos.
Environ.
39, 1557–1566 (2005),
http://dx.doi.org/10.1016/j.atmosenv.2004.11.015
[31] J.A. Gillies,
V. Etyemezian, H. Kuhns, D. Nikolic, and D.A.
Gillette, Effect of vehicle characteristics on unpaved road dust
emissions, Atmos. Environ. 39(13),
2341–2347
(2005),
http://dx.doi.org/10.1016/j.atmosenv.2004.05.064
[32] D. Zhu, H.D.
Kuhns, J.A. Gilies, V. Etyemezian, A.W. Gertler, and
S. Brown, Inferring deposition velocities from changes in aerosol
size
distributions downwind of a roadway, Atmos. Environ. 45, 957–966 (2011),
http://dx.doi.org/10.1016/j.atmosenv.2010.11.004
[33] I.
Grigalavičienė and V. Rutkovienė, Heavy metals accumulation in
the forest soils and mosses along highway Vilnius–Kaunas,
Miškininkystė
2(60), 12–19 (2006),
http://www.miskininkyste.mi.lt/content/AbstraktasGrigalaviciene2006.htm
[34] H.G.
Zechmeister, D. Hohenwallner, A. Riss, and A. Hanus-Illnar,
Estimation of element deposition derived from road traffic sources
by
using mosses, Environ. Poll. 138,
238–249 (2005),
http://dx.doi.org/10.1016/j.envpol.2005.04.005