[PDF]     http://dx.doi.org/10.3952/lithjphys.52201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 8188 (2012)


LIMITATIONS ON THE GINZBURG CRITERION FOR DIRTY SUPERCONDUCTORS
A. Aharonya,b,*, O. Entin-Wohlmana,b,*, H. Bary-Sorokera, and Y. Imryc
aDepartment of Physics, Ben Gurion University, Beer Sheva 84105, Israel
E-mail: aaharony@bgu.ac.il
bIlse Katz Center for Meso- and Nano-Scale Science and Technology, Ben Gurion University, Beer Sheva 84105, Israel
cDepartment of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

Received 28 February 2012; accepted 7 June 2012

The contributions of superconducting fluctuations to the specific heat of dirty superconductors are calculated, including quantum and classical corrections to the ‘usual’ leading Gaussian divergence. These additional terms modify the Ginzburg criterion, which is based on equating these fluctuation-generated contributions to the mean-field discontinuity in the specific heat, and set limits on its applicability for materials with a low transition temperature.
Keywords: dirty superconductors, Ginzburg criterion, superconducting fluctuations, specific heat
PACS: 74.40.-n, 74.20.De, 74.62.En
     
*Also at Tel Aviv University


References / Nuorodos

[1] V.L. Ginzburg and L.D. Landau, Zh. Eksp. Teor. Fiz. 20, 1064 (1950) [in Russian; an English translation is available in Men of Physics: L.D. Landau, ed. D. ter Haar, Vol. 1 (Pergamon, Oxford, 1965), p. 138],
http://www.amazon.co.uk/Men-Physics-Landau-ter-Haar/dp/B00110HWP4/
[2] J. Bardeen, L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957),
http://dx.doi.org/10.1103/PhysRev.108.1175
[3] V.L. Ginzburg, Fiz. Tverd. Tela 2, 2031 (1960) [Sov. Phys. Solid State 2, 1824 (1960)]
[4] See however Y. Oreg and A.M. Finkel’stein, Phys. Rev. Lett. 83, 191 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.191
[5] A.I. Larkin and A. Varlamov, Theory of Fluctuations in Superconductors (Oxford University Press, 2009),
http://www.amazon.co.uk/Fluctuations-Superconductors-International-Monographs-Physics/dp/0199564833/
[6] L.S. Ornstein and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914)
[7] A.A. Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ, 1963)
[8] H. Bary-Soroker, O. Entin-Wohlman, and Y. Imry, Phys. Rev. B 80, 024509 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.024509
[9] O. Entin-Wohlman, H. Bary-Soroker, A. Aharony, Y. Imry, and J.G.E. Harris, Phys. Rev. B 84, 184519 (2011),
http://dx.doi.org/10.1103/PhysRevB.84.184519
[10] A. Altland and B. Simons, Condensed Matter Field Theory (Cambridge University Press, Cambridge, 2006),
http://www.amazon.co.uk/Condensed-Matter-Theory-Alexander-Altland/dp/0521845084/,
http://dx.doi.org/10.1017/CBO9780511804236
[11] P.G. de Gennes, Rev. Mod. Phys. 36, 225 (1964),
http://dx.doi.org/10.1103/RevModPhys.36.225
[12] O. Entin-Wohlman, Phys. Rev. B 12, 4860 (1975),
http://dx.doi.org/10.1103/PhysRevB.12.4860
[13] J.A. Hertz, Phys. Rev. B 14, 1165 (1976),
http://dx.doi.org/10.1103/PhysRevB.14.1165
[14] In principle, the quartic terms in Δ may contain products of Δ’s at different wave-lengths and frequencies, and the coefficient b may depend on all of these different variables
[15] An early discussion of various cutoffs is presented by P.C. Hohenberg, in: Proc. of “Fluctuations in Superconductors”, Asilomar Conference Grounds, eds. W.S. Grove and F. Chilton, Pacific Grove, CA (Stanford Research Institute, Menlo Park, 1968)
[16] M.E. Fisher and J.S. Langer, Phys. Rev. Lett. 20, 665 (1968),
http://dx.doi.org/10.1103/PhysRevLett.20.665
[17] D.S. Fisher, M.P.A. Fisher, and D.A. Huse, Phys. Rev. B 43, 130 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.130