[PDF]
http://dx.doi.org/10.3952/lithjphys.52201
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52, 81–88
(2012)
LIMITATIONS
ON
THE GINZBURG CRITERION FOR DIRTY SUPERCONDUCTORS
A. Aharonya,b,*, O. Entin-Wohlmana,b,*, H.
Bary-Sorokera, and Y. Imryc
aDepartment of
Physics,
Ben Gurion University, Beer Sheva 84105, Israel
E-mail: aaharony@bgu.ac.il
bIlse Katz Center for
Meso- and Nano-Scale Science and Technology, Ben
Gurion University, Beer Sheva 84105, Israel
cDepartment of
Condensed
Matter Physics, Weizmann Institute of
Science, Rehovot 76100, Israel
Received 28 February 2012; accepted 7 June 2012
The
contributions of superconducting
fluctuations to the specific heat
of dirty superconductors are calculated, including quantum and
classical corrections to the ‘usual’ leading Gaussian
divergence. These additional terms modify the Ginzburg criterion,
which
is based on equating these fluctuation-generated
contributions to the mean-field discontinuity in the specific
heat, and
set limits on its applicability for materials with a low
transition temperature.
Keywords: dirty
superconductors, Ginzburg criterion, superconducting
fluctuations, specific heat
PACS: 74.40.-n, 74.20.De,
74.62.En
*Also at Tel Aviv
University
References
/ Nuorodos
[1] V.L. Ginzburg
and L.D. Landau, Zh. Eksp. Teor. Fiz. 20,
1064 (1950) [in
Russian; an
English translation is available in Men
of Physics: L.D. Landau, ed. D. ter Haar, Vol.
1 (Pergamon,
Oxford, 1965), p. 138],
http://www.amazon.co.uk/Men-Physics-Landau-ter-Haar/dp/B00110HWP4/
[2] J. Bardeen,
L.N. Cooper and J.R. Schrieffer, Phys. Rev. 108, 1175 (1957),
http://dx.doi.org/10.1103/PhysRev.108.1175
[3] V.L. Ginzburg,
Fiz. Tverd. Tela 2,
2031 (1960) [Sov. Phys. Solid State 2,
1824 (1960)]
[4] See however Y.
Oreg and A.M. Finkel’stein, Phys. Rev. Lett. 83, 191 (1999),
http://dx.doi.org/10.1103/PhysRevLett.83.191
[5] A.I. Larkin and
A. Varlamov, Theory
of Fluctuations in Superconductors (Oxford University
Press,
2009),
http://www.amazon.co.uk/Fluctuations-Superconductors-International-Monographs-Physics/dp/0199564833/
[6] L.S. Ornstein
and F. Zernike, Proc. Acad. Sci. Amsterdam 17, 793 (1914)
[7] A.A. Abrikosov,
L.P. Gorkov, and I.E. Dzyaloshinskii, Methods
of Quantum Field Theory in
Statistical Physics (Prentice-Hall, Englewood Cliffs, NJ,
1963)
[8] H.
Bary-Soroker, O. Entin-Wohlman, and Y. Imry, Phys. Rev. B 80, 024509 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.024509
[9] O.
Entin-Wohlman, H. Bary-Soroker, A. Aharony, Y. Imry, and J.G.E.
Harris, Phys. Rev. B 84,
184519 (2011),
http://dx.doi.org/10.1103/PhysRevB.84.184519
[10] A. Altland and
B. Simons, Condensed
Matter Field Theory (Cambridge University
Press, Cambridge,
2006),
http://www.amazon.co.uk/Condensed-Matter-Theory-Alexander-Altland/dp/0521845084/,
http://dx.doi.org/10.1017/CBO9780511804236
[11] P.G. de
Gennes, Rev. Mod. Phys. 36,
225 (1964),
http://dx.doi.org/10.1103/RevModPhys.36.225
[12] O.
Entin-Wohlman, Phys. Rev. B 12,
4860 (1975),
http://dx.doi.org/10.1103/PhysRevB.12.4860
[13] J.A. Hertz,
Phys. Rev. B 14,
1165 (1976),
http://dx.doi.org/10.1103/PhysRevB.14.1165
[14] In principle,
the quartic terms in Δ may contain products of Δ’s
at different wave-lengths and frequencies, and the coefficient b may depend on all of
these
different variables
[15] An early
discussion of various cutoffs is presented by P.C.
Hohenberg, in: Proc.
of
“Fluctuations in Superconductors”, Asilomar Conference
Grounds,
eds. W.S. Grove and F. Chilton, Pacific Grove, CA (Stanford Research
Institute, Menlo Park, 1968)
[16] M.E. Fisher
and J.S. Langer, Phys. Rev. Lett. 20,
665 (1968),
http://dx.doi.org/10.1103/PhysRevLett.20.665
[17] D.S. Fisher,
M.P.A. Fisher, and D.A. Huse, Phys. Rev. B 43, 130 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.130