[PDF]
http://dx.doi.org/10.3952/lithjphys.52202
Open access article /
Atviros prieigos straipsnis
Lith.
J. Phys. 52, 89–95
(2012)
TRANSPORT
THROUGH
ASYMMETRIC TWO-LEAD JUNCTIONS OF LUTTINGER LIQUID WIRES
D.N. Aristova,b,c and P. Wölfleb,d
aPetersburg Nuclear
Physics Institute, Gatchina 188300, Russia
bInstitute for
Nanotechnology, Karlsruhe Institute of Technology, 76021
Karlsruhe,
Germany
E-mail: peter.woelfle@kit.edu
cDepartment of
Physics,
St.Petersburg State University, Ulianovskaya 1, St.Petersburg
198504,
Russia
dInstitute for
Condensed
Matter Theory, and Center for Functional Nanostructures,
Karlsruhe
Institute of Technology, 76128 Karlsruhe, Germany
Received 20 April 2012; accepted 7 June 2012
We
calculate the conductance of a
system of two spinless Luttinger
liquid wires with different interaction strengths g1, g2, connected
through a
short junction, within the scattering state
formalism. Following earlier work we formulate the problem in
current
algebra language, and calculate the scale dependent
contribution to the conductance in perturbation theory keeping the
leading universal contributions to all orders in the interaction
strength. From that we derive a renormalization group (RG)
equation for
the conductance. The analytical solution of the
RG-equation is discussed in dependence on g1, g2. The regions of
stability of the two fixed points corresponding to conductance G = 0
and G = 1 respectively,
are
determined.
Keywords: Luttinger liquid
wires, quantum transport, conductance,
renormalization group theory
PACS: 71.10.Pm, 72.10.-d,
85.35.Be
References
/ Nuorodos
[1] T. Giamarchi, Quantum
Physics in
One Dimension
(Clarendon Press, Oxford, 2003),
http://www.amazon.co.uk/Quantum-Physics-Dimension-International-Monographs/dp/0198525001/,
http://dx.doi.org/10.1093/acprof:oso/9780198525004.001.0001
[2] A.O. Gogolin,
A.A. Nersesyan, and A.M. Tsvelik, Bosonization
and
Strongly Correlated
Systems
(Cambridge University Press, Cambridge, 1998),
http://www.amazon.co.uk/Bosonization-Strongly-Correlated-Systems-Alexander/dp/0521617197/
[3] C.L. Kane and
M.P.A. Fisher, Phys. Rev. B 46,
15233 (1992),
http://dx.doi.org/10.1103/PhysRevB.46.15233
[4] A. Furusaki and
N. Nagaosa, Phys. Rev. B 47,
4631 (1993),
http://dx.doi.org/10.1103/PhysRevB.47.4631
[5] I. Safi and
H.J. Schulz, Phys. Rev. B 59,
3040 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.3040
[6] U. Weiss, R.
Egger, and M. Sassetti, Phys. Rev. B 52,
16707 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.16707
[7] P. Fendley,
A.W.W. Ludwig, and H. Saleur, Phys. Rev. B 52, 8934 (1995),
http://dx.doi.org/10.1103/PhysRevB.52.8934
[8] D. Yue, L.I.
Glazman, and K.A. Matveev, Phys. Rev. B 49, 1966 (1994),
http://dx.doi.org/10.1103/PhysRevB.49.1966
[9] D.N. Aristov
and P. Wölfle, Phys. Rev. B 80,
045109 (2009),
http://dx.doi.org/10.1103/PhysRevB.80.045109
[10] D.N. Aristov,
A.P. Dmitriev, I.V. Gornyi, V.Y. Kachorovskii, D.G.
Polyakov, and P. Wölfle, Phys. Rev. Lett. 105, 266404 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.266404
[11] D.N. Aristov
and P. Wölfle, Phys. Rev. B 84,
155426 (2011),
http://dx.doi.org/10.1103/PhysRevB.84.155426
[12] D.N. Aristov
and P. Wölfle, arXiv:1110.1159,
http://lanl.arxiv.org/abs/1110.1159
[13] A. Furusaki
and N. Nagaosa, Phys. Rev. B 54,
R5239 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.R5239
[14] C. de C.
Chamon and E. Fradkin, Phys. Rev. B 56,
2012 (1997),
http://dx.doi.org/10.1103/PhysRevB.56.2012
[15] D.N. Aristov,
Phys. Rev. B 83,
115446 (2011),
http://dx.doi.org/10.1103/PhysRevB.83.115446