[PDF]     http://dx.doi.org/10.3952/lithjphys.52205

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 115125 (2012)


STATISTICS OF RESONANCES IN ONE-DIMENSIONAL DISORDERED SYSTEMS
E. Gurevich and B. Shapiro
Technion – Israel Institute of Technology, 32000 Haifa, Israel
E-mail: boris@physics.technion.ac.il

Received 29 March 2012; accepted 7 June 2012

The paper is devoted to the problem of resonances in one-dimensional disordered systems. Some of the previous results are reviewed and a number of new ones is presented. These results pertain to different models (continuous as well as lattice) and various regimes of disorder and coupling strength. In particular, a close connection between resonances and the Wigner delay time is pointed out and used to obtain information on the resonance statistics.
Keywords: resonance, disorder, time delay
PACS: 03.65.Yz, 03.65.Nk, 72.15.Rn


References / Nuorodos

[1] L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Non-relativistic Theory), Course of Theoretical Physics, Vol. 3 (Pergamon, Oxford, 1977),
http://www.amazon.co.uk/Quantum-Mechanics-non-relativistic-theory-Theoretical/dp/0750635398/
[2] G. Gamow, Z. Phys. 51, 204 (1928),
http://dx.doi.org/10.1007/BF01343196
[3] see e. g. P.A. Mello and N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations (Oxford University Press, Oxford, 2004),
http://www.amazon.co.uk/Quantum-Transport-Mesoscopic-Systems-Nanotechnology/dp/0198525826/,
http://dx.doi.org/10.1093/acprof:oso/9780198525820.001.0001
[4] A.I. Baz, A. Perelomov, and I.B. Zeldovich, Scattering, Reactions and Decay in Nonrelativistic Quantum Mechanics (Israel Program for Scientific Transactions, Jerusalem, 1969),
http://www.amazon.co.uk/Scattering-Reactions-Nonrelativistic-Quantum-Mechanics/dp/070650660X/
[5] C. Mahaux and H.A. Weidenmüller, Shell-Model Approach to Nuclear Reactions (North-Holland, Amsterdam, 1969),
http://www.amazon.co.uk/Shell-model-approach-nuclear-reactions-Claude/dp/0720401445/
[6] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995),
http://www.amazon.co.uk/Electronic-Mesoscopic-Semiconductor-Microelectronic-Engineering/dp/0521599431/
[7] F.M. Dittes, Phys. Rep. 339, 215 (2000),
http://dx.doi.org/10.1016/S0370-1573(00)00065-X
[8] T. Kottos, J. Phys. A 38, 10761 (2005), Special issue on trends in quantum chaotic scattering,
http://dx.doi.org/10.1088/0305-4470/38/49/018
[9] M. Terraneo and I. Guarneri, Eur. Phys. J. B 18, 303 (2000),
http://dx.doi.org/10.1007/PL00011073
[10] F.A. Pinheiro, M. Rusek, A. Orlowski, and B.A. van Tiggelen, Phys. Rev. E 69, 026605 (2004),
http://dx.doi.org/10.1103/PhysRevE.69.026605
[11] M. Titov and Y.V. Fyodorov, Phys. Rev. B 61, R2444 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.R2444
[12] M. Weiss, J.A. Méndez-Bermudes, and T. Kottos, Phys. Rev. B 73, 045103 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.045103
[13] T. Kottos and M. Weiss, Phys. Rev. Lett. 89, 56401 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.056401
[14] H. Kunz and B. Shapiro, J. Phys. A 39, 10155 (2006),
http://dx.doi.org/10.1088/0305-4470/39/32/S16
[15] H. Kunz and B. Shapiro, Phys. Rev. B 77, 054203 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.054203
[16] J. Feinberg, Int. J. Theor. Phys. 50, 1116 (2011),
http://dx.doi.org/10.1007/s10773-010-0604-y
[17] J. Feinberg, Pramana 73, 565 (2009),
http://www.ias.ac.in/pramana/v73/p565/abs.htm,
http://dx.doi.org/10.1007/s12043-009-0108-6
[18] E.P. Wigner, Phys. Rev. 98, 145 (1955),
http://dx.doi.org/10.1103/PhysRev.98.145
[19] C.A.A. de Carvalho and H.M. Nussenzveig, Phys. Rep. 364, 83 (2002),
http://dx.doi.org/10.1016/S0370-1573(01)00092-8
[20] A.M. Jayannavar, G.V. Vijayagovindan, and N. Kumar, Z. Phys. B 75, 77 (1989),
http://dx.doi.org/10.1007/BF01313570
[21] S.A. Ramakrishna and N. Kumar, Eur. Phys. J. B 23, 515 (2001),
http://dx.doi.org/10.1007/s100510170043
[22] S.K. Joshi and A.M. Jayannavar, Solid State Commun. 106, 363 (1999),
http://dx.doi.org/10.1016/S0038-1098(98)00050-7
[23] A. Ossipov, T. Kottos, and T. Geisel, Phys. Rev. B 61, 11411 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.11411
[24] A. Comtet and C. Texier, J. Phys. A Math. Gen. 30, 8017 (1997),
http://dx.doi.org/10.1088/0305-4470/30/23/005
[25] C. Texier and A. Comtet, Phys. Rev. Lett. 82, 4220 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.4220
[26] Y.V. Fyodorov and H.-J. Sommers, J. Math. Phys. 38, 1918 (1997),
http://dx.doi.org/10.1063/1.531919
[27] A.D. Mirlin, Phys. Rep. 326, 259 (2000),
http://dx.doi.org/10.1016/S0370-1573(99)00091-5
[28] For a review see A.Z. Genack and A.A. Chabanov, J. Phys. A 38, 10465 (2005), Special issue on trends in quantum chaotic scattering,
http://dx.doi.org/10.1088/0305-4470/38/49/002
[29] See a review by H. Cao, Waves in Random Media 13, R1 (2003),
http://dx.doi.org/10.1088/0959-7174/13/3/201
[30] K. Pichugin, H. Schanz, and P. Šeba, Phys. Rev. E 64, 056227 (2001),
http://dx.doi.org/10.1103/PhysRevE.64.056227
[31] D.V. Savin, V.V. Sokolov, and H.-J. Sommers, Phys. Rev. E 67, 026215 (2003),
http://dx.doi.org/10.1103/PhysRevE.67.026215
[32] E. Gurevich, to be published elsewhere, PhD thesis (Technion, Haifa, 2011)
[33] A. Ossipov and Y.V. Fyodorov, Phys. Rev. B 71, 125133 (2005),
http://dx.doi.org/10.1103/PhysRevB.71.125133
[34] M. Razavy, Quantum Theory of Tunneling (World Scientific Publishing Co., 2003),
http://www.amazon.co.uk/Quantum-Theory-Tunneling-Mohsen-Razavy/dp/9812380191/
[35] P.W. Anderson, Phys. Rev. 109, 1492 (1958),
http://dx.doi.org/10.1103/PhysRev.109.1492
[36] J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979),
http://www.amazon.co.uk/Models-Disorder-Theoretical-Homogeneously-Disordered/dp/0521217849/
[37] D.J. Thouless, J. Phys. C Solid State Phys. 5, 77 (1972),
http://dx.doi.org/10.1088/0022-3719/5/1/010
[38] A. Cohen, Y. Roth, and B. Shapiro, Phys. Rev. B 38, 12125 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.12125