[PDF]     http://dx.doi.org/10.3952/lithjphys.52206

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 126141 (2012)


QUASI-BOUND STATES OF DIRAC ELECTRONS IN ELECTRIC AND MAGNETIC QUANTUM DOTS
A. Matulis
Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: amatulis@takas.lt

Received 19 March 2012; accepted 7 June 2012

The problem of quasi-bound states for ultra-relativistic Dirac electrons and holes in electric and magnetic quantum dots in graphene is discussed. It is shown that these states with a rather long lifetime appear in an electric quantum dot in the case of a large orbital momentum, and in a magnetic quantum dot if its dimensions exceed the Larmor radius of the electron. The quasibound state properties are analysed by using the local density of states technique the application of which is demonstrated by a simple one-dimensional model of the decaying state. In addition, the analogy between two-dimensional graphene and onedimensional polymers is discussed, which helps in understanding and interpreting the sophisticated features of the electron spectrum.
Keywords: graphene, Dirac electrons, quantum dots, quasi-bound states
PACS: 73.63.Kv, 73.43.Cd, 81.05.Uw, 03.65.-w, 73.21.La


References / Nuorodos

[1] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature (London) 438, 197 (2005),
http://dx.doi.org/10.1038/nature04233
[2] Y. Zhang, Y.W. Tan, H.T. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature (London) 438, 201 (2005),
http://dx.doi.org/10.1038/nature04235
[3] D.S.L. Abergel, V. Apalkov, J. Berashevich, K. Ziegler, and T. Chakraborty, Properties of graphene: a theoretical perspective, Adv. Phys. 59, 261 (2010),
http://dx.doi.org/10.1080/00018732.2010.487978
[4] M.I. Katsnelson, K.S. Novoselov, and A.K. Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys. 2, 620–625 (2006),
http://dx.doi.org/10.1038/nphys384
[5] T. Chakraborty, Quantum Dots (Elsevier, Amsterdam,1999),
http://www.amazon.co.uk/Quantum-Dots-Tapash-Chakraborty/dp/0444539522/
[6] G. Gamow, Zur Quantentheorie des Atomkernes, Z. Physik 51, 204 (1928),
http://dx.doi.org/10.1007/BF01343196
[7] R.W. Gurney and E.U. Condon, Quantum mechanics and radioactive disintegration, Phys. Rev. 33, 127 (1929),
http://dx.doi.org/10.1103/PhysRev.33.127
[8] R.G. Winter, Evolution of a quasi-stationary state, Phys. Rev. 123, 1503 (1961),
http://dx.doi.org/10.1103/PhysRev.123.1503
[9] P.G. Silvestrov and K.B. Efetov, Quantum dots in graphene, Phys. Rev. Lett. 98, 016802 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.016802
[10] P. Hewageegana and V. Apalkov, Electron localization in graphene quantum dots, Phys. Rev. B 77, 245426 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.245426
[11] P. Hewageegana and V. Apalkov, Trapping of an electron in coupled quantum dots in graphene, Phys. Rev. B 79, 115418 (2009),
http://dx.doi.org/10.1103/PhysRevB.79.115418
[12] A. Matulis and F.M. Peeters, Analogy between one-dimensional chain models and graphene, Am. J. Phys. 77, 595 (2009),
http://dx.doi.org/10.1119/1.3127143
[13] A. Matulis and G. Kiršanskas, Approximate description of decaying quasi-stationary state, Lith. J. Phys. 49(4), 373–381 (2009),
http://dx.doi.org/10.3952/lithjphys.49402
[14] A. Matulis and F.M. Peeters, Quasibound states of quantum dots in single and bilayer graphene, Phys. Rev. B 77(11), 115423-1–7 (2008),
http://dx.doi.org/10.1103/PhysRevB.77.115423
[15] V.V. Cheianov, V. Fal’ko, and B. Altshuler, The focusing of electron flow and a Veselago lens in graphene p-n junctions, Science 315(5816), 1252–1255 (2007),
http://dx.doi.org/10.1126/science.1138020
[16] J. Eroms, M. Zitzlsperger, D. Weiss, J.H. Smet, C. Albrecht, R. Fleischmann, M. Behet, J. De Boeck, and G. Borghs, Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices, Phys. Rev. B 59(12), R7829–R7832 (1999),
http://dx.doi.org/10.1103/PhysRevB.59.R7829
[17] F.M. Peeters and A. Matulis, Quantum structures created by nonhomogeneous magnetic fields, Phys. Rev. B 48(20), 15166–15174 (1993),
http://dx.doi.org/10.1103/PhysRevB.59.R7829
[18] M. Ramezani Masir, A. Matulis, and F.M. Peeters, Quasibound states of Schrödinger and Dirac electrons in a magnetic quantum dot, Phys. Rev. B 79(15), 155451-1–8 (2009),
http://dx.doi.org/10.1103/PhysRevB.59.R7829