A. Dementjev
, J. Kiškis
Received 18 November 2011; revised 29 March 2012; accepted 20
September
2012
We demonstrate the capabilities
of
the coherent anti-Stokes Raman scattering (CARS) microscope and
its
multimodal operation to image a histological section of human
intestinal tissue. The imaging of unstained and stained sections
using
various nonlinear optical contrasts was performed. The CARS
configuration of our microscope allows probing which does not
require a
preliminary staining of tissue saving the treatment time and
providing
label-free investigation of original matter. Particular
attention was
paid to visualisation of unstained tissue. CARS images were
recorded in
the high wave number Raman spectroscopy region and the spectra
of the
most distinguished features of images are provided and
discussed.
Additionally, the two photon excitation fluorescence (TPEF) and
second
harmonic generation (SHG) contrast mechanisms were used for
structural
visualisation of both unstained and stained sections of human
intestinal tissue. Visualisation of a histological section using
all
contrast mechanisms mentioned above is analysed and discussed.
The
research is aimed to draw attention to a potential of
CARS/nonlinear
microscopy in routine healthcare.
Keywords: coherent
anti-Stokes
Raman scattering (CARS) microscopy, nonlinear microscopy,
medical
imaging, histology
PACS: 42.65.Dr, 87.64.M,
78.47.jh
Darbe pristatome skenuojančio
koherentinės antistoksinės Ramano sklaidos (KARS) mikroskopo
galimybes
vaizdinti histologinius audinių pjūvius. Pateikiame dažytų ir
nedažytų
žmogaus žarnyno audinių histologinių pjūvių įvairaus netiesinės
optikos
kontrasto vaizdus. KARS kontrasto vaizdai leidžia atlikti
histologinius
tyrimus be bandinio dažymo. Ypatingas dėmesys skirtas nedažyto
audinio
vaizdinimui. KARS vaizdai registruoti didelių Stokso poslinkių
srityje.
Pateikti ir aptariami ryškiausių struktūrų KARS spektrai. Taip
pat
pateikti antros harmonikos generacijos bei daugiafotonio
žadinimo
fluorescencijos vaizdai. Aptarti žmogaus žarnyno audinių dažytų
ir
nedažytų histologinių pjūvių vaizdai. Tyrimų tikslas – atkreipti
dėmesį
į KARS mikroskopijos ir netiesinės optinės mikroskopijos
potencialą
taikant ją įprastos sveikatos priežiūros laboratorinėje
praktikoje.
References
/
Nuorodos
[1] L.C. Junqueira and J. Carneiro,
Basic
Histology: Text and Atlas (McGraw-Hill, 2005),
http://www.amazon.co.uk/Basic-Histology-Text-Atlas-Junqueiras/dp/0071440917/
[2] B. Schrader, B. Dippel, I. Erb, S. Keller, T. Löchte, H.
Schulz, E.
Tatsch, and S. Wessel, NIR Raman spectroscopy in medicine and
biology:
results and aspects, J. Mol. Struct.
480–481,
21–32 (1999),
http://dx.doi.org/10.1016/S0022-2860(98)00650-4
[3] M. Diem, C. Matthäus, T. Chernenko, M.J. Romeo, M.
Miljković, B.
Bird, J. Schubert, K. Papamarkakis, and N. Laver, Infrared and
Raman
spectroscopy and spectral imaging of individual cells, in:
Infrared and Raman Spectroscopic
Imaging,
eds. R. Salzer and H.W. Siezler (Wiley-VCH Verlag GmbH &
Co.,
Weinheim, 2009) pp.173–201,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-352731993X.html
[4] M.J.
Romeo, B. Bird, S. Boydston-White, C. Matthäus, M. Miljković, T.
Chernenko, and M. Diem, Infrared and Raman microspectroscopic
studies
of individual human cells, in:
Vibrational
Spectroscopy for Medical Diagnosis, eds. M. Diem, J.M.
Chalmers,
and P.R. Griffiths (John Wiley & Sons Ltd., Hoboken, 2008)
pp.
27–71,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470012145.html
[5] M. Müller and A. Zumbusch, Coherent anti-Stokes Raman
scattering
microscopy, ChemPhysChem
8,
2156–2170 (2007),
http://dx.doi.org/10.1002/cphc.200700202
[6] C.L. Evans and X.S. Xie, Coherent anti-Stokes Raman
scattering
microscopy: chemical imaging for biology and medicine, Annu.
Rev. Anal.
Chem.
1, 883–909
(2008),
http://dx.doi.org/10.1146/annurev.anchem.1.031207.112754
[7] H.A. Rinia, K.N.J. Burder, M. Bonn, and M. Müller,
Quantitative
label-free imaging of lipid composition and packing of
individual
cellular lipid droplets using multiplex CARS microscopy,
Biophys. J.
95,
4908–4914 (2008),
http://dx.doi.org/10.1529/biophysj.108.137737
[8] T.T. Le,
T.B. Huff,
and J.X.
Cheng, Coherent anti-Stokes Raman scattering imaging of lipids
in
cancer metastasis, BMC Cancer
9(1),
42
(2009),
http://dx.doi.org/10.1186/1471-2407-9-42
[9] H.W.Wang, I.M. Langohr, M. Sturek, and J.-X. Cheng, Imaging
and
quantitative analysis of atherosclerotic lesions by CARS-based
multimodal nonlinear optical microscopy, Arterioscler. Thromb.
Vasc.
Biol.
29(9), 1342–1348
(2009),
http://dx.doi.org/10.1161/ATVBAHA.109.189316
[10] T.T. Le, H.M. Duren, M.N. Slipchenko, C.D. Hu,
and
J.X. Cheng, Labelfree quantitative analysis of lipid
metabolism in
living
Caenorhabditis elegans,
J. Lipid. Res.
51,
672–677 (2010),
http://dx.doi.org/10.1194/jlr.D000638
[11] S.H. Kim, E.S. Lee, J.Y. Lee, E.S. Lee, B.S.
Lee, J.E.
Park, and D.W. Moon, Multiplex coherent anti-Stokes Raman
spectroscopy
images intact atheromatous lesions and concomitantly identifies
distinct chemical profiles of atherosclerotic lipids, Circ. Res.
106, 1332–1341 (2010),
http://dx.doi.org/10.1161/CIRCRESAHA.109.208678
[12] A. Tuer, D. Tokarz, N. Prent, R. Cisek,
J. Alami, D.J.
Dumont, L. Bakueva, J. Rowlands, and V. Barzda, Nonlinear
multicontrast microscopy of hematoxylin-and-eosin-stained
histological
section, J. Biomed. Opt.
15(2),
026018
(2010),
http://dx.doi.org/10.1117/1.3382908
[13] A. Dementjev, V. Gulbinas, A. Serbenta, M. Kaucikas,
and G.
Niaura, Coherent anti-Stokes Raman scattering
spectroscope/microscope
based on a widely tunable laser source, J. Mod. Opt.
57(6), 503–509 (2010),
http://dx.doi.org/10.1080/09500341003728932
[14] J.D. Bancroft and M. Gamble,
Theory
and Practice of Histological Techniques (Elsevier
Health
Sciences, 2007)
p. 725,