A. Moisejenkova
, N. Tarasiuk
, E. Maceika
, and A. Girgždys
The results of an integrated
study of
the
radiocesium behaviour in Lake Tapeliai by using not only
conventional
data
on radiocesium activity concentrations in lake water and
sediments but
also
a complex data set on seasonal variations and vertical profiles
of
standard
water variables are presented. Radiocesium activity
concentrations in
lake
water and a vertical structure of the water column considerably
depend
on radiocesium-enriched inflows of the coloured waters from the
lake’s
swampy
watershed. The global fallouts are mainly responsible for
radiocesium
inventory
in lake sediments, where maximum values of radiocesium are found
in the
upper
part of the water column above the ~5.4 m depth. The maximum
values of
radiocesium
inventories in lake sediments are consistent with the respective
densities
of its deposits in the nearest forest soils. The main process of
sediment
activation is a direct sorption of radiocesium onto the sediment
surface. Sedimentation rates in the lake mainly vary in the
range of
3.5–5 mm yr
–1. The lake bottom feeding sources located mainly on
the
southern
terrace as well as their related near-bottom flows reduce
respective
sedimentation
and radiocesium inventories in sediments. The thermal regime of
the
near-bottom
water in Lake Tapeliai in winter strongly depends on the
meteorological
conditions
in autumn and may be classified as varying from super warm to
moderately
warm. Under conditions of a super warm regime, the elevated
radiocesium
concentrations
in the near-bottom waters may be partially due to the
thermodynamic
mechanism
of its release from the bottom sediments.
Keywords: radiocesium,
lake,
water,
standard variables, sediments
PACS: 92.20.Td,
92.40.gj,
92.40.Gc
Darbe yra tiriama radiocezio
elgsena
Tapelių
ežere panaudojant ne tik įprastinius duomenis apie radiocezio
aktyvumo
koncentracijas
ežero vandenyje ir dugno nuosėdose, bet ir vandens standartinių
parametrų
vertikalių profilių ir jų sezoninių variacijų matavimo
rezultatus.
Parodyta,
kad pelkės spalvoto vandens, praturtinto radioceziu,
pritekėjimas yra
labai
reikšmingas ežero vertikaliai struktūrai ir vandens
radioaktyviajai
taršai.
Tyrimai rodo, kad radiocezio atsargos ežero dugno nuosėdose
susiformavo
dėl
jo globalinių iškritų ir šių atsargų didžiausias kiekis
sukauptas
seklesnėje
ežero dalyje (iki ~5,4 m gylio). Maksimalūs radiocezio kiekiai
dugno
nuosėdose
atitinka jo iškritų tankį šalia esančiame miško dirvožemyje.
Darbe
parodyta,
kad pagrindinis dugno nuosėdų aktyvacijos radioceziu mechanizmas
yra jo
tiesioginė
sorbcija. Sedimentacijos greitis ežere buvo įvertintas 3,5–5
mm/metus.
Ežero
dugniniai šaltiniai pietinėje ežero dalyje ir jų veikiamos
priedugninio
vandens
srovės silpnina sedimentaciją ir mažina šių dugno nuosėdų
užterštumą
radioceziu.
Priedugninio vandens terminis režimas žiemą ypač priklauso nuo
meteorologinių
sąlygų rudenį ir gali svyruoti nuo itin šiltojo (temperatūra per
4 °С)
iki
vidutiniškai šiltojo (temperatūra žemiau 4 °С) tipo. Tikėtina,
kad
priedugninio
vandens padidintas radiocezio koncentracijas itin šiltojo režimo
sąlygomis
žiemą iš dalies lemia šio nuklido išskyrimas termodinaminiu
mechanizmu
iš
dugno nuosėdų
References
/
Nuorodos
[1] M. Eriksson, E. Holm, P. Roos, and H. Dahlgaard,
Distribution and
flux
of
238Pu,
239,240Pu,
241Am,
137
Cs and
210Pb to high arctic lakes in the Thule
district
(Greenland),
J. Environ. Radioact.
75(3),
285–299
(2004),
http://dx.doi.org/10.1016/j.jenvrad.2003.12.007
[2] E. Ilus and R. Saxén, Accumulation of Chernobyl-derived
137
Cs in bottom sediments of some Finnish lakes, J. Environ.
Radioact.
82(2), 199–221 (2005),
http://dx.doi.org/10.1016/j.jenvrad.2005.01.008
[3] Ch. Erlinger, H. Lettner, A. Hubmer, W. Hofmann, and F.
Steinhäusler,
Determining the Chernobyl impact on sediments of pre-Alpine lake
with a
very
comprehensive set of data, J. Environ. Radioact.
99(8), 1294–1301 (2008),
http://dx.doi.org/10.1016/j.jenvrad.2008.03.012
[4] Ch. Erlinger, H. Lettner, A. Hubmer, W. Hofmann, and F.
Steinhäusler,
Determination of
137Cs in the water system of a
pre-Alpine
lake,
J. Environ. Radioact.
100(4),
354–360
(2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.01.002
[5] M. Lusa, J. Lehto, A. Leskinen, and T. Jaakkola,
137Cs,
239,240Pu and
241Am in bottom sediments
and
surface
water
of Lake Päijänne, Finland, J. Environ. Radioact.
100(4), 468–476 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.03.006
[6] V. Putyrskaya, E. Klemt, and S. Röllin, Migration of
137Cs
in
tributaries, lake water and sediment of Lago Maggiore (Italy,
Switzerland)
– analysis and comparison with Lago di Lugano and other lakes,
J.Environ.
Radioact.
100(1), 35–48
(2009),
http://dx.doi.org/10.1016/j.jenvrad.2008.10.005
[7] L. Monte, R. Periañez, P. Boyer, J.T. Smith, and J.E.
Brittain, The
role
of physical processes controlling the behavior of radionuclide
contaminants
in the aquatic environment: a review of state-of-the-art
modelling
approaches,
J. Environ. Radioact.
100(9),
779–784
(2009),
http://dx.doi.org/10.1016/j.jenvrad.2008.05.006
[8] J.E. Pinder III, T.G. Hinton, F.W.Whicker, and J.T. Smith,
Cesium
accumulation
by fish following acute input to lakes: a comparison of
experimental
and
Chernobyl-impacted systems, J. Environ. Radioact.
100(6), 456–467 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.03.004
[9] J.E. Pinder III, T.G. Hinton, and F.W. Whicker, Contrasting
cesium
dynamics
in neighboring deep and shallow warm-water reservoirs, J.
Environ.
Radioact.
101(9), 659–669 (2010),
http://dx.doi.org/10.1016/j.jenvrad.2010.02.010
[10] L. Monte, J.E. Brittain, L. Håkanson, R. Helig, J.T. Smith,
and M.
Zheleznyak, Review and assessment of models used to predict the
fate of
radionuclides
in lakes, J. Environ. Radioact.
69
(2), 177–205 (2003),
http://dx.doi.org/10.1016/S0265-931X(03)00069-9
[11] A.A. Bulgakov, A.V. Konoplev, J.T. Smith, J. Hilton, R.N.J.
Comans, G.V. Laptev, and B.F. Christyuk, Modelling the long-term
dynamics of radiocesium
in closed lakes, J. Environ. Radioact.
61(1), 41–53 (2002),
http://dx.doi.org/10.1016/S0265-931X(01)00113-8
[12] L. Monte, C. Grimani, D. Desideri, and G. Angeli, Modelling
the
long-term
behavior of radiocesium and radiostrontium in two Italian lakes,
J.
Environ.
Radioact.
80(1),
105–123
(2005),
http://dx.doi.org/10.1016/j.jenvrad.2004.08.015
[13] V. Putyrskaya and E. Klemt, Modeling
137Cs
migration
processes
in lake sediments, J. Environ. Radioact.
96(1–3), 54–62 (2007),
http://dx.doi.org/10.1016/j.jenvrad.2007.01.017
[14] P.H. Santschi, S. Bollhalder, K. Farrenkothen, A. Lueck, S.
Zingg,
and
M. Sturm, Chernobyl radionuclides in the environment: tracers
for the
tight
coupling of atmospheric, terrestrial, and aquatic geochemical
processes,
Environ. Sci. Technol.
22,
510–516
(1988),
http://dx.doi.org/10.1021/es00170a004
[15] P.H. Santschi, S. Bollhalder, S. Zingg, A. Lueck, and K.
Farrenkothen,
The self-cleaning capacity of surface waters after radioactive
fallout.
Evidence
from European waters after Chernobyl, 1986–1988, Environ. Sci.
Technol.
24, 519–527 (1990),
http://dx.doi.org/10.1021/es00074a009
[16 L. Håkanson, A compilation of empirical data and variations
in data
concerning
radiocesium in water, sediments and fish in European lakes after
Chernobyl,
J. Environ. Radioact.
44(1),
21–42
(1999),
http://dx.doi.org/10.1016/S0265-931X(98)00072-1
[17] D. Marčiulionienė, R. Jasiulionis, A. Gudelis, and P.
Širvaitis,
Peculiarities
of radionuclide fallout from the Ignalina NPP, their
accumulation and
migration
in the Lake Drukšiai ecosystem, in:
Radionuclide
Pollution in Lithuania and Its Effects (Academia, Open
Society
Fund
– Lithuania, Vilnius, 1992) p. 78–84 [in Lithuanian]
[18] R. Jasiulionis, A. Gudelis, I. Savickaitė, and D.
Marčiulionienė,
Radionuclides
in Lake Drūkšiai – the cooling basin of the Ignalina NPP, Atmos.
Phys.
17(1), 25–29 (1995) [in Russian]
[19] R. Gvozdaitė, R. Druteikienė, N. Tarasiuk, N.
Špirkauskaitė, and
B.
Lukšienė, Investigation of radioactivity in some lakes of
Lithuania,
in:
Reports from Fourth Conference
of
Lithuania
Junior Scientists, March 15, 2001 (Vilnius Gediminas
Technical
University,
2001) p. 310–317
[20] V. Remeikis, R. Gvozdaitė, R. Druteikienė., A. Plukis, N.
Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in
sediments of
Lithuanian
lakes, Nukleonika
50(2),
61–66
(2005),
abstract
,
PDF
[21] J.M. Abril, R. El-Mrabet, and H. Barros, The importance of
recording
physical and chemical variables simultaneously with remote
radiological
surveillance
of aquatic systems: a perspective for environmental modelling,
J.
Environ.
Radioact.
72(1–2),
145–152
(2004),
http://dx.doi.org/10.1016/S0265-931X(03)00196-6
[22] N. Tarasiuk, E. Koviazina, V. Kubarevičienė, and E.
Schliahtič, On
the
radiocesium carbonate barrier in organics-rich sediments of Lake
Juodis,
Lithuania, J. Environ. Radioact.
93
(2), 100–118 (2007),
http://dx.doi.org/10.1016/j.jenvrad.2006.12.004
[23] N. Tarasiuk, A. Moisejenkova, and E. Koviazina, On the
mechanism
of
the enrichment in radiocesium of near-bottom water in Lake
Juodis,
Lithuania,
J. Environ. Radioact.
101(10),
883–894
(2010),
http://dx.doi.org/10.1016/j.jenvrad.2010.06.001
[24] N. Tarasiuk, E. Koviazina, and V. Kubarevičienė, On
seasonal
variations
of radiocesium speciation in the surface sediments of Lake
Juodis,
Lithuania,
J. Environ. Radioact.
99(1),
199─210
(2008),
http://dx.doi.org/10.1016/j.jenvrad.2007.10.014
[25] G. Grižienė, J. Jablonskis, S. Januševičius, I.
Jurgelevičienė, A.
Jurgelėnaitė,
A. Juškienė, and R. Kriaučiūnas, Hydrography of the Neris River,
Energetika
1, 20–41 (1993) [in Lithuanian]
[26] A. Gudelis, V. Remeikis, A. Plukis, and D. Lukauskas,
Efficiency
calibration
of HPGe detectors for measuring environmental samples, Environ.
Chem.
Phys.
22(3–4), 117–125 (2000).
[27] N. Tarasiuk, A. Moisejenkova, E. Koviazina, R. Karpicz, and
N.
Astrauskienė,
On the radiocesium behavior in a small humic lake (Lithuania),
Nukleonika
54(3), 211–220 (2009 ),
abstract
,
PDF
[28] N. Tarasiuk, E. Koviazina, and E. Schliahtič, On the
optimization
of
empirical data concerning radionuclides in water of Lake Juodis,
Environ.
Chem. Phys.
24(3),
118–128
(2004)
[29] K. Konitzer and M. Meili, Retention and horizontal
redistribution
of
sedimentary Chernobyl
137Cs in a small Swedish
forest lake,
Mar.
Freshwat. Res.
46(1),
153–158
(1995),
abstract
[30] H.J. Mohler, F. Ward Whicker, and T.G. Hinton, Temporal
trends of
137Cs in an abandoned reactor cooling reservoir, J.
Environ.
Radioact.
37(3), 251–268 (1997),
http://dx.doi.org/10.1016/S0265-931X(97)00016-7
[31] S. Kaminski, T. Richter, M. Walser, and G. Linder,
Redissolution
of
caesium radionuclides from sediments of freshwater lakes due to
biological
degradation of organic matter, Radiochimica Acta
66–67, 433–436 (1994)
[32] J.T. Smith, N.V. Belova, A.A. Bulgakov, R.N.J. Comans, A.V.
Konoplev,
A.V.Kudelsky, M.J. Madruga, O.V. Voitsekhovitch, and G. Zibold,
The
“AQUASCOPE”
simplified model for predicting
89,90Sr,
131I,
and
134,137Cs in surface waters after a large-scale
radioactive
fallout,
Health Phys.
89(6),
628–644
(2005),
http://dx.doi.org/10.1097/01.HP.0000176797.66673.b7
[33] N. Tarasyuk, Radionuclide accumulation capacity of
Lithuanian
lakes,
in:
Part of CRP “Radionuclide transport dynamics in
freshwater
resources”, IAEA Research contract No 10544/RO, final
report
(Institute of
Physics,
Vilnius, 2001) pp. 79
[34] K. Stelingis, Distribution and migration of
137Cs
in
the
upper soil of Lithuania, Health and Environment: Ecological
Medicine
1, 83–92 (1996) [in Lithuanian]
[35] K. Stelingis and N. Tarasiuk, Vertical distribution of
137
Cs in undisturbed soil of Lithuania, in:
Proceedings of International Symposium on Ionizing Radiation,
Stockholm,
May 20–24, 1996, 623–627,
link
[36] A. Moisejenkova, N. Tarasiuk, E. Koviazina, E. Maceika, and
A.
Girgždys,
On the thermal regime of Lake Tapeliai (Lithuania) (2011) [in
press]
[37] K. Kilkus,
Thermal
Structures
of
Dimictic Lakes (Vilnius University, Vilnius, Lithuania,
2000)
200
p. [in Russian]
[38] N.M. Arsen'eva, L.K. Davydov, L.N. Dubrovina, and N.G.
Konkina,
Seiches in Lakes in the USSR (Leningrad University
press,
Leningrad,
1963) pp. 184 [in Russian]
[39] R.H. Spigel and J. Imberger, The classification of
mixed-layer
dynamics
in lakes of small to medium size, J. Phys. Oceanogr.
10, 1104–1121 (1980),
http://dx.doi.org/10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2
[40] L. Bengtsson and T. Svensson, Thermal regime of ice covered
Swedish
lakes, Nord. Hydrol.
27,
39–56
(1996),
abstract
[41] J. Malm, A. Terzhevik, L. Bengtsson, P. Boyarinov, A.
Glinsky, N.
Palshin,
and M. Petrov, Temperature and salt content regimes in three
shallow
ice-covered
lakes, Nord. Hydrol.
28,
129–152
(1997),
abstract
[42] M. Petrov, A. Terzhevik, R. Zdorovennov, and G.
Zdorovennova, The
thermal
structure of a shallow lake in early winter, Water Resour.
33, 135–143 (2006),
http://dx.doi.org/10.1134/S0097807806020035
[43] J.S. Turner,
Buoyancy
Effects
in
Fluids (Cambridge University Press, Cambridge, 1973)
pp.
416,
http://dx.doi.org/10.1017/CBO9780511608827