[PDF]     http://dx.doi.org/10.3952/lithjphys.52308

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 238252 (2012)


137Cs IN LAKE TAPELIAI, LITHUANIA
A. Moisejenkovaa, N. Tarasiukb, E. Koviazina b, E. Maceikab, and A. Girgždysa
aVilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
bInstitute of Physics, Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: moisejenkova.anastasija@gmail.com

Received 25 June 2012; accepted 20 September 2012

The results of an integrated study of the radiocesium behaviour in Lake Tapeliai by using not only conventional data on radiocesium activity concentrations in lake water and sediments but also a complex data set on seasonal variations and vertical profiles of standard water variables are presented. Radiocesium activity concentrations in lake water and a vertical structure of the water column considerably depend on radiocesium-enriched inflows of the coloured waters from the lake’s swampy watershed. The global fallouts are mainly responsible for radiocesium inventory in lake sediments, where maximum values of radiocesium are found in the upper part of the water column above the ~5.4 m depth. The maximum values of radiocesium inventories in lake sediments are consistent with the respective densities of its deposits in the nearest forest soils. The main process of sediment activation is a direct sorption of radiocesium onto the sediment surface. Sedimentation rates in the lake mainly vary in the range of 3.5–5 mm yr –1. The lake bottom feeding sources located mainly on the southern terrace as well as their related near-bottom flows reduce respective sedimentation and radiocesium inventories in sediments. The thermal regime of the near-bottom water in Lake Tapeliai in winter strongly depends on the meteorological conditions in autumn and may be classified as varying from super warm to moderately warm. Under conditions of a super warm regime, the elevated radiocesium concentrations in the near-bottom waters may be partially due to the thermodynamic mechanism of its release from the bottom sediments.
Keywords: radiocesium, lake, water, standard variables, sediments
PACS: 92.20.Td, 92.40.gj, 92.40.Gc


RADIOCEZIS TAPELIŲ (LIETUVA) EŽERE
A. Moisejenkovaa, N. Tarasiukb, E. Koviazinab , E. Maceikab, A. Girgždysa
aVilniaus Gedimino Technikos Universitetas, Vilnius, Lietuva
bFizinių ir technologijos mokslų centro Fizikos institutas, Vilnius, Lietuva
 
Darbe yra tiriama radiocezio elgsena Tapelių ežere panaudojant ne tik įprastinius duomenis apie radiocezio aktyvumo koncentracijas ežero vandenyje ir dugno nuosėdose, bet ir vandens standartinių parametrų vertikalių profilių ir jų sezoninių variacijų matavimo rezultatus. Parodyta, kad pelkės spalvoto vandens, praturtinto radioceziu, pritekėjimas yra labai reikšmingas ežero vertikaliai struktūrai ir vandens radioaktyviajai taršai. Tyrimai rodo, kad radiocezio atsargos ežero dugno nuosėdose susiformavo dėl jo globalinių iškritų ir šių atsargų didžiausias kiekis sukauptas seklesnėje ežero dalyje (iki ~5,4 m gylio). Maksimalūs radiocezio kiekiai dugno nuosėdose atitinka jo iškritų tankį šalia esančiame miško dirvožemyje. Darbe parodyta, kad pagrindinis dugno nuosėdų aktyvacijos radioceziu mechanizmas yra jo tiesioginė sorbcija. Sedimentacijos greitis ežere buvo įvertintas 3,5–5 mm/metus. Ežero dugniniai šaltiniai pietinėje ežero dalyje ir jų veikiamos priedugninio vandens srovės silpnina sedimentaciją ir mažina šių dugno nuosėdų užterštumą radioceziu. Priedugninio vandens terminis režimas žiemą ypač priklauso nuo meteorologinių sąlygų rudenį ir gali svyruoti nuo itin šiltojo (temperatūra per 4 °С) iki vidutiniškai šiltojo (temperatūra žemiau 4 °С) tipo. Tikėtina, kad priedugninio vandens padidintas radiocezio koncentracijas itin šiltojo režimo sąlygomis žiemą iš dalies lemia šio nuklido išskyrimas termodinaminiu mechanizmu iš dugno nuosėdų


References / Nuorodos

[1] M. Eriksson, E. Holm, P. Roos, and H. Dahlgaard, Distribution and flux of 238Pu, 239,240Pu, 241Am, 137 Cs and 210Pb to high arctic lakes in the Thule district (Greenland), J. Environ. Radioact. 75(3), 285–299 (2004),
http://dx.doi.org/10.1016/j.jenvrad.2003.12.007
[2] E. Ilus and R. Saxén, Accumulation of Chernobyl-derived 137 Cs in bottom sediments of some Finnish lakes, J. Environ. Radioact. 82(2), 199–221 (2005),
http://dx.doi.org/10.1016/j.jenvrad.2005.01.008
[3] Ch. Erlinger, H. Lettner, A. Hubmer, W. Hofmann, and F. Steinhäusler, Determining the Chernobyl impact on sediments of pre-Alpine lake with a very comprehensive set of data, J. Environ. Radioact. 99(8), 1294–1301 (2008),
http://dx.doi.org/10.1016/j.jenvrad.2008.03.012
[4] Ch. Erlinger, H. Lettner, A. Hubmer, W. Hofmann, and F. Steinhäusler, Determination of 137Cs in the water system of a pre-Alpine lake, J. Environ. Radioact. 100(4), 354–360 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.01.002
[5] M. Lusa, J. Lehto, A. Leskinen, and T. Jaakkola, 137Cs, 239,240Pu and 241Am in bottom sediments and surface water of Lake Päijänne, Finland, J. Environ. Radioact. 100(4), 468–476 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.03.006
[6] V. Putyrskaya, E. Klemt, and S. Röllin, Migration of 137Cs in tributaries, lake water and sediment of Lago Maggiore (Italy, Switzerland) – analysis and comparison with Lago di Lugano and other lakes, J.Environ. Radioact. 100(1), 35–48 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2008.10.005
[7] L. Monte, R. Periañez, P. Boyer, J.T. Smith, and J.E. Brittain, The role of physical processes controlling the behavior of radionuclide contaminants in the aquatic environment: a review of state-of-the-art modelling approaches, J. Environ. Radioact. 100(9), 779–784 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2008.05.006
[8] J.E. Pinder III, T.G. Hinton, F.W.Whicker, and J.T. Smith, Cesium accumulation by fish following acute input to lakes: a comparison of experimental and Chernobyl-impacted systems, J. Environ. Radioact. 100(6), 456–467 (2009),
http://dx.doi.org/10.1016/j.jenvrad.2009.03.004
[9] J.E. Pinder III, T.G. Hinton, and F.W. Whicker, Contrasting cesium dynamics in neighboring deep and shallow warm-water reservoirs, J. Environ. Radioact. 101(9), 659–669 (2010),
http://dx.doi.org/10.1016/j.jenvrad.2010.02.010
[10] L. Monte, J.E. Brittain, L. Håkanson, R. Helig, J.T. Smith, and M. Zheleznyak, Review and assessment of models used to predict the fate of radionuclides in lakes, J. Environ. Radioact. 69 (2), 177–205 (2003),
http://dx.doi.org/10.1016/S0265-931X(03)00069-9
[11] A.A. Bulgakov, A.V. Konoplev, J.T. Smith, J. Hilton, R.N.J. Comans, G.V. Laptev, and B.F. Christyuk, Modelling the long-term dynamics of radiocesium in closed lakes, J. Environ. Radioact. 61(1), 41–53 (2002),
http://dx.doi.org/10.1016/S0265-931X(01)00113-8
[12] L. Monte, C. Grimani, D. Desideri, and G. Angeli, Modelling the long-term behavior of radiocesium and radiostrontium in two Italian lakes, J. Environ. Radioact. 80(1), 105–123 (2005),
http://dx.doi.org/10.1016/j.jenvrad.2004.08.015
[13] V. Putyrskaya and E. Klemt, Modeling 137Cs migration processes in lake sediments, J. Environ. Radioact. 96(1–3), 54–62 (2007),
http://dx.doi.org/10.1016/j.jenvrad.2007.01.017
[14] P.H. Santschi, S. Bollhalder, K. Farrenkothen, A. Lueck, S. Zingg, and M. Sturm, Chernobyl radionuclides in the environment: tracers for the tight coupling of atmospheric, terrestrial, and aquatic geochemical processes, Environ. Sci. Technol. 22, 510–516 (1988),
http://dx.doi.org/10.1021/es00170a004
[15] P.H. Santschi, S. Bollhalder, S. Zingg, A. Lueck, and K. Farrenkothen, The self-cleaning capacity of surface waters after radioactive fallout. Evidence from European waters after Chernobyl, 1986–1988, Environ. Sci. Technol. 24, 519–527 (1990),
http://dx.doi.org/10.1021/es00074a009
[16 L. Håkanson, A compilation of empirical data and variations in data concerning radiocesium in water, sediments and fish in European lakes after Chernobyl, J. Environ. Radioact. 44(1), 21–42 (1999),
http://dx.doi.org/10.1016/S0265-931X(98)00072-1
[17] D. Marčiulionienė, R. Jasiulionis, A. Gudelis, and P. Širvaitis, Peculiarities of radionuclide fallout from the Ignalina NPP, their accumulation and migration in the Lake Drukšiai ecosystem, in: Radionuclide Pollution in Lithuania and Its Effects (Academia, Open Society Fund – Lithuania, Vilnius, 1992) p. 78–84 [in Lithuanian]
[18] R. Jasiulionis, A. Gudelis, I. Savickaitė, and D. Marčiulionienė, Radionuclides in Lake Drūkšiai – the cooling basin of the Ignalina NPP, Atmos. Phys. 17(1), 25–29 (1995) [in Russian]
[19] R. Gvozdaitė, R. Druteikienė, N. Tarasiuk, N. Špirkauskaitė, and B. Lukšienė, Investigation of radioactivity in some lakes of Lithuania, in: Reports from Fourth Conference of Lithuania Junior Scientists, March 15, 2001 (Vilnius Gediminas Technical University, 2001) p. 310–317
[20] V. Remeikis, R. Gvozdaitė, R. Druteikienė., A. Plukis, N. Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments of Lithuanian lakes, Nukleonika 50(2), 61–66 (2005), abstract , PDF
[21] J.M. Abril, R. El-Mrabet, and H. Barros, The importance of recording physical and chemical variables simultaneously with remote radiological surveillance of aquatic systems: a perspective for environmental modelling, J. Environ. Radioact. 72(1–2), 145–152 (2004),
http://dx.doi.org/10.1016/S0265-931X(03)00196-6
[22] N. Tarasiuk, E. Koviazina, V. Kubarevičienė, and E. Schliahtič, On the radiocesium carbonate barrier in organics-rich sediments of Lake Juodis, Lithuania, J. Environ. Radioact. 93 (2), 100–118 (2007),
http://dx.doi.org/10.1016/j.jenvrad.2006.12.004
[23] N. Tarasiuk, A. Moisejenkova, and E. Koviazina, On the mechanism of the enrichment in radiocesium of near-bottom water in Lake Juodis, Lithuania, J. Environ. Radioact. 101(10), 883–894 (2010),
http://dx.doi.org/10.1016/j.jenvrad.2010.06.001
[24] N. Tarasiuk, E. Koviazina, and V. Kubarevičienė, On seasonal variations of radiocesium speciation in the surface sediments of Lake Juodis, Lithuania, J. Environ. Radioact. 99(1), 199─210 (2008),
http://dx.doi.org/10.1016/j.jenvrad.2007.10.014
[25] G. Grižienė, J. Jablonskis, S. Januševičius, I. Jurgelevičienė, A. Jurgelėnaitė, A. Juškienė, and R. Kriaučiūnas, Hydrography of the Neris River, Energetika 1, 20–41 (1993) [in Lithuanian]
[26] A. Gudelis, V. Remeikis, A. Plukis, and D. Lukauskas, Efficiency calibration of HPGe detectors for measuring environmental samples, Environ. Chem. Phys. 22(3–4), 117–125 (2000).
[27] N. Tarasiuk, A. Moisejenkova, E. Koviazina, R. Karpicz, and N. Astrauskienė, On the radiocesium behavior in a small humic lake (Lithuania), Nukleonika 54(3), 211–220 (2009 ), abstract , PDF
[28] N. Tarasiuk, E. Koviazina, and E. Schliahtič, On the optimization of empirical data concerning radionuclides in water of Lake Juodis, Environ. Chem. Phys. 24(3), 118–128 (2004)
[29] K. Konitzer and M. Meili, Retention and horizontal redistribution of sedimentary Chernobyl 137Cs in a small Swedish forest lake, Mar. Freshwat. Res. 46(1), 153–158 (1995), abstract
[30] H.J. Mohler, F. Ward Whicker, and T.G. Hinton, Temporal trends of 137Cs in an abandoned reactor cooling reservoir, J. Environ. Radioact. 37(3), 251–268 (1997),
http://dx.doi.org/10.1016/S0265-931X(97)00016-7
[31] S. Kaminski, T. Richter, M. Walser, and G. Linder, Redissolution of caesium radionuclides from sediments of freshwater lakes due to biological degradation of organic matter, Radiochimica Acta 66–67, 433–436 (1994)
[32] J.T. Smith, N.V. Belova, A.A. Bulgakov, R.N.J. Comans, A.V. Konoplev, A.V.Kudelsky, M.J. Madruga, O.V. Voitsekhovitch, and G. Zibold, The “AQUASCOPE” simplified model for predicting 89,90Sr, 131I, and 134,137Cs in surface waters after a large-scale radioactive fallout, Health Phys. 89(6), 628–644 (2005),
http://dx.doi.org/10.1097/01.HP.0000176797.66673.b7
[33] N. Tarasyuk, Radionuclide accumulation capacity of Lithuanian lakes, in: Part of CRP “Radionuclide transport dynamics in freshwater resources”, IAEA Research contract No 10544/RO, final report (Institute of Physics, Vilnius, 2001) pp. 79
[34] K. Stelingis, Distribution and migration of 137Cs in the upper soil of Lithuania, Health and Environment: Ecological Medicine 1, 83–92 (1996) [in Lithuanian]
[35] K. Stelingis and N. Tarasiuk, Vertical distribution of 137 Cs in undisturbed soil of Lithuania, in: Proceedings of International Symposium on Ionizing Radiation, Stockholm, May 20–24, 1996, 623–627, link
[36] A. Moisejenkova, N. Tarasiuk, E. Koviazina, E. Maceika, and A. Girgždys, On the thermal regime of Lake Tapeliai (Lithuania) (2011) [in press]
[37] K. Kilkus, Thermal Structures of Dimictic Lakes (Vilnius University, Vilnius, Lithuania, 2000) 200 p. [in Russian]
[38] N.M. Arsen'eva, L.K. Davydov, L.N. Dubrovina, and N.G. Konkina, Seiches in Lakes in the USSR (Leningrad University press, Leningrad, 1963) pp. 184 [in Russian]
[39] R.H. Spigel and J. Imberger, The classification of mixed-layer dynamics in lakes of small to medium size, J. Phys. Oceanogr. 10, 1104–1121 (1980),
http://dx.doi.org/10.1175/1520-0485(1980)010<1104:TCOMLD>2.0.CO;2
[40] L. Bengtsson and T. Svensson, Thermal regime of ice covered Swedish lakes, Nord. Hydrol. 27, 39–56 (1996), abstract
[41] J. Malm, A. Terzhevik, L. Bengtsson, P. Boyarinov, A. Glinsky, N. Palshin, and M. Petrov, Temperature and salt content regimes in three shallow ice-covered lakes, Nord. Hydrol. 28, 129–152 (1997), abstract
[42] M. Petrov, A. Terzhevik, R. Zdorovennov, and G. Zdorovennova, The thermal structure of a shallow lake in early winter, Water Resour. 33, 135–143 (2006),
http://dx.doi.org/10.1134/S0097807806020035
[43] J.S. Turner, Buoyancy Effects in Fluids (Cambridge University Press, Cambridge, 1973) pp. 416, 
http://dx.doi.org/10.1017/CBO9780511608827