K. Kairyte
, Z. Luksiene
, M. Pucetaite
, and V. Sablinskas
Received 27 April 2012; revised 27 June 2012; accepted 20
September 2012
The silver nanoparticle colloid
was
used to obtain surface enhanced Raman spectra of Listeria monocytogenes, Salmonela enterica, and Esherichia coli bacteria.
The SERS
spectra were captured using for excitation the near-infrared
(1064 nm)
laser radiation with reduced intensity, which ensured the
prevention of
the fluorescence background as well as photo- and thermal
decomposition
of the samples. It was found that the optimal size of silver
nanoparticles for the enhancement of the Raman signal in the
near-infrared spectral region is ca. 50 nm. The spectral data
obtained
in this study indicate that relative intensities of SERS
spectral bands
of bacteria can be used for spectral differentiation of
bacteria. In
case of Listeria , Salmonela, and Esherichia cells, the
intensity
ratio of spectral bands of adenine and cysteine can be used as a
spectral marker for differentiation of the bacteria.
Keywords: SERS, silver
colloid,
bacteria identification and differentiation
PACS: 87.64.kp,
87.85.Rs,
87.19.xu
References
/
Nuorodos
[1] WHO: World Health Organization, Food safety and food borne
illness,
available at
http://www.who.int/mediacentre/factsheets/fs237/en/ (last
accessed
08.12.11) (2007)
[2] MMWR, Vital signs: incidence and trends of infection with
pathogens
transmitted commonly through food-foodborne diseases active
surveilance
network,
10 US sites, 1996–2010, MMWR
60,
749–755 (2011),
full
text ,
PDF
[3] J.W. Chan, A.P. Esposito, C.E. Talley, C.W. Hollars, S.M.
Lane, and
T. Huser, Reagentless identification of single bacterial spores
in
aqueous
solution by confocal laser tweezers Raman spectroscopy, Anal.
Chem.
76, 599–603
(2004),
http://dx.doi.org/10.1021/ac0350155
[4] P. Rösch, M. Harz, M. Schmitt, K.D. Peschke, O. Ronneberger,
H.
Burkhardt, H.W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J.
Popp,
Chemotaxonomic identification of single bacteria by micro-Raman
spectroscopy: Application to clean-room-relevant biological
contaminations, Appl. Environ. Microbiol.
71, 1626–1637 (2005),
http://dx.doi.org/10.1128/AEM.71.3.1626-1637.2005
[5] P. Rösch, M. Harz, M. Schmitt, and J. Popp, Raman
spectroscopic
identification of single yeast cells, J. Raman Spectros.
36, 377–379 (2005),
http://dx.doi.org/10.1002/jrs.1312
[6] Y. Liu, Y.-R. Chen, X. Nou, and K. Chao, Potential of
surface
enhanced Raman spectroscopy for the rapid identification of
Escherichia coli and
Listeria
monocytogenes culture on silver colloidal
nanoparticles, Appl.
Spectros.
61(8), 824-831 (2007),
http://dx.doi.org/10.1366/000370207781540060
[7] P.C. Lee and D. Meisel, Adsorption and surface-enhanced
Raman of
dyes on silver and gold sols, J. Phys. Chem.
86, 3391–3395 (1982),
http://dx.doi.org/10.1021/j100214a025
[8] K. Maquelin, C. Kirschner, L.P. Choo-Smith, N. van den
Braak, H.
Endtz, and D. Naumann, Identification of medically relevant
microorganisms by vibrational spectroscopy, J. Microbiol. Meth.
51 (3), 255–271 (2002),
http://dx.doi.org/10.1016/S0167-7012(02)00127-6
[9] M. Tsuboi, I. Ezaki, M. Aida, M. Suzuki, A. Yimit, K.
Ushizawa, and
T. Ueda, Raman scattering tensors of tyrosine, Biospectroscopy
47, 61–71 (1998),
http://dx.doi.org/10.1002/(SICI)1520-6343(1998)4:1<61::AID-BSPY7>3.0.CO;2-V
[10] X. Lu and B. Rasco, in:
Applications of vibrational
spectroscopy in food science, eds. E.C.Y. Li-Chan, P.R.
Griffiths,
and J.M. Chalmers (John Wiley & Sons, Ltd., 2010), pp.
675–694,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470742992.html
[11] W. Cheung, I.T. Shadi, Y. Xu, and R. Goodacre, Quantitative
analysis of the banned food dye Sudan-1 using surface enhanced
Raman
scattering with multivariate chemometrics, J. Phys. Chem. C
114(16), 7285–7290 (2010),
http://dx.doi.org/10.1021/jp908892n
[12] M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, and
A.
Mustapha, Detection of melamine in gluten, chicken feed, and
processed
foods using surface enhanced Raman spectroscopy and HPLC, J.
Food Sci.
73(8),
T129–T134 (2008),
http://dx.doi.org/10.1111/j.1750-3841.2008.00901.x
[13] R. Goodacre and R.M. Jarvis, Raman spectroscopy:
Applications in
bioprocess and biotechnology, Eur. Pharm. Rev.
11
(4), 72–77 (2005),
YMMV
[14] V.L. Brewster, R.M. Jarvis, and R. Goodacre, Raman
spectroscopic
techniques for biotechnology and bioprocessing, Eur. Pharm. Rev.
14(1), 48–52 (2009),
YMMV
[15] S.J. Clarke, R.E. Littleford, W.E. Smith, and R. Goodacre,
Rapid
monitoring of antibiotics using Raman and surface enhanced Raman
spectroscopy, Analyst
130(7),
1019–1026
(2005),
http://dx.doi.org/10.1039/B502540K
[16] A.D. Shaw, M.K. Winson, A.M. Woodward, A.C. McGovern, H.M.
Davey,
N. Kaderbhai, D. Broadhurst, R.J. Gilbert, J. Taylor, É.M.
Timmins, R.
Goodacre, D.B. Kell, B.K. Alsberg, and J.J. Rowling Rapid
analysis of
high-dimensional bioprocesses using multivariate spectroscopies
and
advanced chemometrics, Adv. Biochem. Eng. Biotechnol.
66 , 83–113 (1999),
http://dx.doi.org/10.1007/3-540-48773-5_3
[17] L.J. Mauer, A.A. Chernyshova, A. Hiatt, A. Deering, and R.
Davis,
Melamine detection in infant formula powder using nearand
mid-infrared
spectroscopy, J. Agr. Food Chem.
57(10),
3974–3980 (2009),
http://dx.doi.org/10.1021/jf900587m
[18] K.A. Hollywood, I.T. Shadi, and R. Goodacre, Monitoring the
succinate dehydrogenase activity isolated from mitochondria by
surface
enhanced Raman scattering, J. Phys. Chem. C
114 (16), 7308–7313 (2010),
http://dx.doi.org/10.1021/jp908950x
[19] Y. Burgula, D. Khali, S. Kim, S.S. Krishnan, M.A. Cousin,
J.P.
Gore, B.L. Reuhs, and L.J. Mauer, Review of mid-infrared Fourier
transform-infrared spectroscopy applications for bacterial
detection,
J. Rapid Meth. Autom. Microbiol.
15(2), 146–175 (2007),
http://dx.doi.org/10.1111/j.1745-4581.2007.00078.x
[20] L. Mariey, J.P. Signolle, C. Amiel, and J. Travert,
Discrimination, classification, identification of microorganisms
using
FTIR spectroscopy and
chemometrics, Vib. Spectros.
26
(2),
151–159 (2001),
http://dx.doi.org/10.1016/S0924-2031(01)00113-8
[21] O. Preisner, J.A. Lopes, R. Guiomar, J. Machado, and J.C.
Menezes,
Fourier transform infrared (FT-IR) spectroscopy in bacteriology:
towards
a reference method for bacteria discrimination, Anal. Bioanal.
Chem.
387(5),
1739–1748 (2007),
http://dx.doi.org/10.1007/s00216-006-0851-1
[22] D. Naumann, FT-infrared and FT-Raman spectroscopy in
biomedical
research, Appl. Spectros. Rev.
36(2–3),
239–298
(2001),
http://dx.doi.org/10.1081/ASR-100106157
[23] M. Harz, P. Rösch, and J. Popp, Vibrational spectroscopy—A
powerful tool for the rapid identification of microbial cells at
the
single-cell level, Cytometry
75A(2),
104–113
(2009),
http://dx.doi.org/10.1002/cyto.a.20682
[24] R.M. Jarvis and R. Goodacre, Characterisation and
identification
of bacteria using SERS, Chem. Soc. Rev.
37 (5), 931–936 (2008),
http://dx.doi.org/10.1039/B705973F
[25] W.E. Huang, M. Li, R.M. Jarvis, R. Goodacre, and S.A.
Banwart,
Shining light on the microbial world: the application of Raman
microscopy, Adv. Appl. Microbiol.
70,
153–186 (2010),
http://dx.doi.org/10.1016/S0065-2164(10)70005-8
[26] R. Davis, J. Irudayaraj, B.L. Reuhs, and L.J. Mauer,
Detection of
E. coli O157:H7 from
ground
beef
using Fourier transform infrared (FT-IR) spectroscopy and
chemometrics,
J.
Food Sci.
75(6),
M340–M346
(2010),
http://dx.doi.org/10.1111/j.1750-3841.2010.01686.x
[27] M. Lin, M. Al-Holy, H. Al-Qadiri, D. Kang, A.G. Cavinato,
Y.
Huang, and B.A. Rasco, Discrimination of intact and injured
Listeria monocytogenes by
Fourier
transform infrared spectroscopy and principal component
analysis, J.
Agr. Food Chem.
52(19),
5769–5772
(2004),
http://dx.doi.org/10.1021/jf049354q
[28] H.M. Al-Qadiri, M. Lin, M. Al-Holy, A.G. Cavinato, and B.A.
Rasco,
Detection of sublethal thermal injury in
Salmonella enterica serotype Typhimurium and
Listeria monocytogenes
using
Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm
−1),
J.
Food Sci.
73(2),
M54–M61
(2008),
http://dx.doi.org/10.1111/j.1750-3841.2007.00640.x
[29] C. Fan, Z.Q. Hu, L.K. Riley, G.A. Purdy, A. Mustapha, and
M. Lin,
Detecting food- and waterborne viruses by surface-enhanced Raman
spectroscopy,
J. Food Sci.
75(5),
M302–M307
(2010),
http://dx.doi.org/10.1111/j.1750-3841.2010.01619.x
[30] M. Beekes, P. Lasch, and D. Naumann, Analytical
applications of
Fourier transform-infrared (FT-IR) spectroscopy in microbiology
and
prion research, Vet. Microbiol.
123(4),
305–319 (2007),
http://dx.doi.org/10.1016/j.vetmic.2007.04.010
[31] R.M. Jarvis, A. Brooker, and R. Goodacre, Surface-enhanced
Raman
spectroscopy for bacterial discrimination utilizing a scanning
electron
microscope with a Raman spectroscopy interface, Anal. Chem.
76(17), 5198–5202 (2004),
http://dx.doi.org/10.1021/ac049663f
[32] R.M. Jarvis and R. Goodacre, Ultra-violet resonance Raman
spectroscopy for the rapid discrimination of urinary tract
infection
bacteria, FEMS Microbiol. Lett.
232(2),
127–132 (2004),
http://dx.doi.org/10.1016/S0378-1097(04)00040-0
[33] J. Guicheteau, S. Christesen, D. Emge, and A.
Tripathi,
Bacterial mixture identification using Raman and
surface-enhanced Raman
chemical imaging, J. Raman Spectros.
41(12),
1632–1637 (2010),
http://dx.doi.org/10.1002/jrs.2601
[34] D. Cam, K. Keseroglu, M. Kahraman, F. Sahin, and M. Culha,
Multiplex identification of bacteria in bacterial mixtures with
surface-enhanced Raman scattering, J. Raman Spectros.
41 , 484–489 (2010),
http://dx.doi.org/10.1002/jrs.2475
[35] B.S. Luo and M. Lin, A portable Raman system for the
identification of foodborne pathogenic bacteria, J. Rapid Meth.
Autom.
Microbiol.
16, 238–255
(2008),
http://dx.doi.org/10.1111/j.1745-4581.2008.00131.x