[PDF]     http://dx.doi.org/10.3952/lithjphys.52311

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 193202 (2012)


FORMATION OF FLAT-TOP PICOSECOND PUMP PULSES FOR OPCPA SYSTEMS BY CASCADE SECOND HARMONIC GENERATION
J. Adamonisa,b, R. Antipenkova , J. Kolenda b,c, A. Michailovasb,c, A.P. Piskarskasa,  A. Varanavičiusa, and A. Zaukevičiusa
aFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
b“Ekspla” Ltd, Savanorių 231, LT-02300 Vilnius, Lithuania
cCenter for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius , Lithuania
E-mail: j.adamonis@ekspla.com

Received 25 May 2012; revised 30 August 2012; accepted 20 September 2012

We report on the method for picosecond pulse envelope shaping that is based on pulse temporal profile transformations during the cascade second harmonic generation. It was demonstrated theoretically and experimentally that under a particular second harmonic generation condition, e. g. pump pulse intensity and crystal length, the 1064 nm pump pulses with a temporal profile close to the Gaussian one and pulse width of 75 ps at FWHM can be converted to pulses of fundamental and second harmonics with the super-Gaussian temporal profile having an intensity plateau region extending over a ~100 ps time interval when conversion efficiency in the first stage of the harmonic generator was around 45–50%. Our proposed shaping method is particularly suitable for the application in the multistage OPCPA pumped by the second harmonic of Nd:YAG laser radiation.
Keywords: OPCPA, pulse shaping, second harmonic generation
PACS: 42.65.Yj, 42.65.Re, 42.65.Ky


PLOKŠČIOS VIRŠŪNĖS PIKOSEKUNDINIŲ KAUPINIMO IMPULSŲ PARAMETRINIO STIPRINIMO SISTEMOMS FORMAVIMAS PAKOPINIAIS ANTROSIOS HARMONIKOS GENERATORIAIS
J. Adamonisa,b, R. Antipenkova , J. Kolendab,c , A. Michailovasb,c, A.P. Piskarskasa,  A. Varanavičius a, A. Zaukevičiusa
aVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
bUAB „Ekspla“, Vilnius, Lietuva
cFizinių ir technologijos mokslų centras, Vilnius, Lietuva

Darbe pristatome metodą, skirtą formuoti pikosekundinių impulsų gaubtinę, naudojant pakopinius antrosios harmonikos generatorius. Eksperimentiškai ir teoriškai parodyta, kad parinkus atitinkamą kaupinimo impulso intensyvumą bei antrosios harmonikos kristalo ilgį, pirmosios harmonikos 1064 nm bangos ilgio ir 75 ps trukmės Gauso formos impulsai tribangės sąveikos metu transformuojami į pirmosios ir antrosios harmonikos impulsus, kurių plokščios impulso gaubtinės sritis viršija 100 ps trukmės intervalą, kai keitimas pirmosios pakopos antrosios harmonikos generatoriuje yra 45–50 %. Siūlomas impulsų gaubtinės formavimo metodas gali būti efektyviai taikomas daugiapakopėse moduliuotos fazės impulsų parametrinėse stiprinimo sistemose


References / Nuorodos

[1] A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun. 88, 437–440 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[2] I. N. Ross, P. Matousek, G.H.C. New, and K. Osvay, Analysis and optimization of optical parametric chirped pulse amplification, J. Opt. Soc. Am. B 19, 2945-2956 (2002),
http://dx.doi.org/10.1364/JOSAB.19.002945
[3] N. Ishii, L. Turi, V.S. Yakovlev, T. Fuji, F. Krausz, A. Baltuska, R. Butkus, G. Veitas, V. Smilgevicius, R. Danielius, and A. Piskarskas, Multimillijoule chirped parametric amplification of few-cycle pulses, Opt. Lett. 30, 567–569 (2005),
http://dx.doi.org/10.1364/OL.30.000567
[4] S. Witte, R.Th. Zinkstok, A.L. Wolf, W. Hogervorst, W. Ubachs, and K.S.E. Eikema, A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical  parametric chirped pulse amplification, Opt. Express 14, 8168–8177 (2006),
http://dx.doi.org/10.1364/OE.14.008168
[5] D. Herrmann, L. Veisz, R. Tautz, F.Tavella, K. Schmid, V. Pervak, and F. Krausz, Generation of sub-three-cycle, 16 TW light pulses by using noncollinear optical parametric chirped-pulse amplification, Opt. Lett. 34, 2459–2461 (2009),
http://dx.doi.org/10.1364/OL.34.002459
[6] V. Pyragaite, A. Stabinis, R. Butkus, R. Antipenkov, and A. Varanavičius, Parametric amplification of chirped optical pulses under pump depletion, Opt. Commun. 283, 1144–1151 (2010),
http://dx.doi.org/10.1016/j.optcom.2009.11.026
[7] L.J. Waxer, V. Bagnoud, I.A. Begishev, M.J. Guardalben, J. Puth, and J.D. Zuegel, High-conversion-efficiency optical parametric chirped-pulse amplification system using spatiotemporally shaped pump pulses, Opt. Lett. 28, 1245–1247 (2003),
http://dx.doi.org/10.1364/OL.28.001245
[8] S. Witte and K.S.E. Eikema, Ultrafast optical parametric chirped-pulse amplification, IEEE J. Sel. Topics Quantum Electron. 18, 296–307 (2012),
http://dx.doi.org/10.1109/JSTQE.2011.2118370
[9] D.A. Jaroszynski and T.A. King, Subnanosecond pulse generation of 193 nm radiation by pulse slicing, J. Phys. E Sci. Instrum. 16, 862–865 (1983),
http://dx.doi.org/10.1088/0022-3735/16/9/011
[10] M.D. Skeldon, A high-bandwidth electrical waveform generator based on an aperture-coupled stripline, Rev. Sci. Instrum. 71, 3559–3566 (2000),
http://dx.doi.org/10.1063/1.1288254
[11] M.M. Wefers and K.A. Nelson, Analysis of programmable ultrashort waveform generation using liquid crystal spatial light modulators, J. Opt. Soc. Am. B 12, 1343–1362 (1995),
http://dx.doi.org/10.1364/JOSAB.12.001343
[12] A.M. Weiner, Femtosecond pulse shaping using spatial light modulators, Rev. Sci. Instrum. 71, 1929–1960 (2000),
http://dx.doi.org/10.1063/1.1150614
[13] J. Kang, W. Zhang, H. Wei, S. Chen, and J. Zhu, Pulse re-shaping by using a liquid crystal spatial light modulator and deflector for producing a specific waveform, Chinese Optic. Lett. 4, 184–186 (2006),
http://www.opticsinfobase.org/col/abstract.cfm?URI=col-4-3-184
[14] S. Cialdi, F. Castelli, and I. Boscolo, Rectangular pulse formation in a laser harmonic generation, Appl. Phys. B 82, 383–389 (2006),
http://dx.doi.org/10.1007/s00340-005-1999-7
[15] M.A. Dugan, J.X. Tull, and W.S. Warren, High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses, J. Opt. Soc. Am. B 14, 2348–2358 (1997),
http://dx.doi.org/10.1364/JOSAB.14.002348
[16] D. Kaplan and P. Tournois, Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping, J. Phys. IV 12, 69–75 (2002),
http://dx.doi.org/10.1051/jp4:20020098
[17] T. Balčiūnas, G.Y. Fan, G. Andriukaitis, A. Pugžlys, and A. Baltuška, High-power top-hat pulses from a Yb master oscillator power amplifier for efficient optical parametric amplifier pumping, Opt. Lett. 37, 2547–2549 (2012),
http://dx.doi.org/10.1364/OL.37.002547
[18] C.E. Thomas and L.D. Siebert, Pulse shape generator for laser fusion, Appl. Opt. 15, 462–465 (1976),
http://dx.doi.org/10.1364/AO.15.000462
[19] W.E. Martin and D. Milam, Interpulse interference and passive laser pulse shapers, Appl. Opt. 15, 3054–3061 (1976),
http://dx.doi.org/10.1364/AO.15.003054
[20] C.W. Siders, J.L.W. Siders, A.J. Taylor, S.-G. Park, and A.M. Weiner, Efficient high-energy pulse-train generation using a 2n-pulse Michelson interferometer, Appl. Opt. 37, 5302–5305 (1998),
http://dx.doi.org/10.1364/AO.37.005302
[21] J.A. Fülöp, Zs. Major, B. Horváth, F. Tavella, A. Baltuška, and F. Krausz, Shaping of picosecond pulses for pumping optical parametric amplification, Appl. Phys. B 87, 79–84 (2007),
http://dx.doi.org/10.1007/s00340-006-2488-3
[22] J.C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, Inc., New York, 2006) p. 178,
http://store.elsevier.com/product.jsp?isbn=9780122154935
[23]  A. Dement’ev, V. Girdauskas, O. Vrublevskaja, and R. Kazragyte, Numerical investigation of influence of the nonlinear refraction index upon the second harmonic generation, Lith. J. Phys. 42 (4), 263–274 (2002)
[24] G. Arisholm, General numerical methods for simulating second-order nonlinear interactions in birefringent media, J. Opt. Soc. Am. B 14, 2543–2549 (1997),
http://dx.doi.org/10.1364/JOSAB.14.002543
[25] S. Witte, R. Zinkstok, W. Hogervorst, and K.S.E. Eikema, Numerical simulations for performance optimization of a few-cycle terawatt NOPCPA system, Appl. Phys. B 87, 677–684 (2007),
http://dx.doi.org/10.1007/s00340-007-2640-8
[26] A. Couairon, E. Brambilla, T. Corti, D. Majus, O. de J. Ramírez-Góngora, and M. Kolesik, Practitioners guide to laser pulse propagation models and simulation, Eur. Phys. J. Special Topics 199, 5–76 (2011),
http://dx.doi.org/10.1140/epjst/e2011-01503-3
[27] V.V. Lozhkarev, G.I. Freidman, V.N. Ginzburg, E.A. Khazanov, O.V. Palashov, A.M. Sergeev, and I.V. Yakovlev, Study of broadband optical parametric chirped pulse amplification in a DKDP crystal pumped by the second harmonic of a Nd:YLF laser, Laser Phys. 15, 1319–1333 (2005)
[28]  C.R. Mendonça, L. Misoguti, and S.C. Zilio, Second harmonic pulse distortion by imperfect phase matching, Opt. Commun. 174, 481–486 (2000),
http://dx.doi.org/10.1016/S0030-4018(99)00714-2
[29] D. Majus, O. Jedrkiewicz, M. Molteni, P. Ragazzi, P. Di Trapani, and G. Tamošauskas, Spatio-temporal characterization of self-formed hollow light pulses in the pump depletion regime of second harmonic generation, Eur. Phys. J. Special Topics 199, 77–87 (2011),
http://dx.doi.org/10.1140/epjst/e2011-01504-2
[30] J. Adamonis, R. Antipenkov, J. Kolenda, A. Michailovas, A.P. Piskarskas, and A. Varanavičius, High-energy Nd:YAG-amplification system for OPCPA pumping, Quantum Electron. 42, 567–574 (2012),
http://dx.doi.org/10.1070/QE2012v042n07ABEH014689
[31] V. Bagnoud, I.A. Begishev, M.J. Guardalben, J. Puth, and J.D. Zuegel, 5 Hz, >250 mJ optical parametric chirped-pulse amplifier at 1053 nm, Opt. Lett. 30, 1843–1845 (2005),
http://dx.doi.org/10.1364/OL.30.001843
[32] J. Moses, C. Manzoni, S.-W. Huang, G. Cerullo, and F.X. Kaertner, Temporal optimization of ultrabroadband high-energy OPCPA, Opt. Еxpress 17, 5540–5555 (2009).
http://dx.doi.org/10.1364/OE.17.005540