G. Mordas
, T. Petäjä
Received 19 July 2012; revised 10 September 2012; accepted 20
September
2012
A water-based condensation
particle
counter
(CPC) TSI 3785 is a new step for the ultrafine particle
measurement
technique.
A new instrument was examined in this study. Detection
efficiency was
investigated
experimentally using different temperatures of the saturator and
of the
growth
tube. The experiments showed that detection efficiency can be
improved
by
increasing the temperature of the growth tube and decreasing the
saturator temperature. Fitting a two-free parameter equation to
the
experimental data,
the cut-sizes D50%
were
determined. The determined cut-sizes were comparable with the
other
three
widely used fitting equations. The cut-sizes were studied by
changing
the
growth tube temperature from 40 to 65 °C and varying the
saturator
temperature
from 10 to 30 °C. For the purpose of the study, the instrument
operation
regime (saturator and growth tube temperatures) can be optimised
by
selecting
the needed cut-size. The cut-sizes can be changed in a wide
range. The
smallest
detected cut-size D50%
was 4.2 nm, and the largest 14.6 nm. In the default operation
regime,
the instrument cut-size was 5.9 nm. The detection efficiency of
the
studied TSI
CPC 3785 was compared with the ultrafine TSI CPC 3786. The
results
showed
that the studied CPC can be optimised to the regime having a
smaller
cut-size
than the cut-size of the ultrafine CPC in the default regime.
Thus, the
tested
TSI CPC 3785 had the lowest detection limit (
D50%) of 4.2 nm, and the TSI CPC 3786 had
4.6 nm for
the
silver particles.
Keywords: detection
efficiency,
condensation particle counter, ultrafine particles
PACS: 92.60.MZ, 92.20.Bk
žingsnis ultrasmulkiųjų
aerozolio
dalelių
matavimo technikoje. Straipsnyje pateikiami šio skaitiklio
eksperimentinių
tyrimų duomenys. Įvertintas aerozolio dalelių registravimo
efektyvumas
kaip
dalelių dydžio funkcija, garų prisotinimo ir aerozolio dalelių
augimo
kamerose
naudojant skirtingą temperatūrą. Nustatyta, kad dalelių
registravimo
efektyvumas
gali būti pagerintas didinant dalelių augimo kameroje
temperatūrą ir
mažinant
temperatūrą garų prisotinimo kameroje. Eksperimentiškai
nustatytos
registravimo efektyvumo vertės buvo aprašytos dviejų laisvų
parametrų
funkcija ir ją taikant
buvo įvertinti registravimo efektyvumo ribiniai dydžiai (
D50%). Ribiniai dydžiai paklaidų ribose
sutampa su
dydžiais,
nustatytais naudojant kitas metodikas. Registravimo ribiniai
dydžiai
buvo
įvertinti naudojant garų prisotinimo ir dalelių augimo kamerose
skirtingas
temperatūras. Eksperimento metu dalelių augimo kameroje
temperatūra
buvo
kečiama nuo 40 iki 65 °C, o garų prisotinimo kameroje – nuo 10
iki 30
°C. Mažiausias nustatytas registravimo ribinis dydis buvo 4,2
nm, o
didžiausias
– 14,6 nm. Gamintojo nustatytame veikimo režime sidabro dalelėms
ribinis
dydis yra 5,9 nm. Tiriamo TSI 3785 kondensacinio dalelių
skaitiklio
registravimo
efektyvumas buvo palygintas su kito, itin smulkias daleles
registruojančio,
kondensacinio skaitiklio TSI 3786 efektyvumu. Eksperimento
rezultatai
parodė,
kad testuojamo TSI 3785 prietaiso veikimo režimas gali būti
optimizuotas
ir turėti mažesnę ribinio dydžio vertę (4,2 nm) nei itin smulkių
dalelių
skaitiklis TSI 3786 (4,6 nm), dirbantis gamintojo nustatytame
veikimo
režime.
References
/
Nuorodos
[1] M. Kulmala, H. Vehkamäki, T. Petäjä, M. Dal Maso, A. Lauri,
V.-M.
Kerminen,
W. Birmili, and P.H. McMurry, Formation and growth rates of
ultrafine
atmospheric
particles: a review of observations, J. Aerosol Sci.
35, 143–176 (2004),
http://dx.doi.org/10.1016/j.jaerosci.2003.10.003
[2] M.Z. Jacobson, Strong radiative heating due to the mixing
state of
black
carbon in atmospheric aerosols, Nature
409, 695–697 (2001),
http://dx.doi.org/10.1038/35055518
[3] H.E. Wichmann and A. Peters, Epidemiological evidence of the
effects of ultrafine particle exposure, Phil. Trans. Roy. Soc.
Lond.
358, 2751–2768
(2000),
http://dx.doi.org/10.1098/rsta.2000.0682
[4] L. Metnieks and L.W. Pollak,
Introduction
for Use of Photo-Electric Condensation Nucleus Counters
(School
of
Cosmic Physics, Dublin Institute of Advanced Studies, 1959),
PDF
[5] M.R. Stoltzenburg and P.H. McMurry, An ultrafine aerosol
condensation
nucleus counter, Aerosol Sci. Technol.
14, 48–65 (1991),
http://dx.doi.org/10.1080/02786829108959470
[6] R. Mavliev, Turbulent mixing condensation nucleus counter,
Atmos.
Res.
62, 303–314 (2002),
http://dx.doi.org/10.1016/S0169-8095(02)00016-9
[7] P.H. McMurry, The history of condensation nucleus counters,
Aerosol
Sci. Technol.
33,
297–322
(2000),
http://dx.doi.org/10.1080/02786820050121512
[8] G.J. Sem, Design and performance characteristics of three
continuous-flow
condensation particle counters: a summary, Atmos. Res.
62, 267–294 (2002),
http://dx.doi.org/10.1016/S0169-8095(02)00014-5
[9] G. Mordas, M. Kulmala, T. Petäjä, P.P. Aalto, V.
Matulevicius, V.
Grigoraitis,
V. Ulevicius, V. Grauslys, A. Ukkonen, and K. Hämeri, Design and
performance
characteristics of a condensation particle counter UF-02proto,
Boreal
Env.
Res.
10, 543–552
(2005),
abstract
,
PDF
[10] S.V. Hering and M.R. Stolzenburg, A method for particle
size
amplification
by water condensation in a laminar, thermally diffusive flow,
Aerosol
Sci.
Technol. 39, 428–436 (2005),
http://dx.doi.org/10.1080/027868290953416
[11] TSI Inc,
Model 3785
Ultrafine
Water-based
Condensation Particle Counter, Operation and Service Manual,
P/N
1930072,
Revision B (TSI press, Massachusetts, 2005),
PDF
[12] H.G. Scheibel and J. Porstendörfer, Generation of
monodisperse Ag-
and NaCl-aerosols with particle diameters between 2 and 300 nm,
J.
Aerosol
Sci.
14(2), 113–126
(1983),
http://dx.doi.org/10.1016/0021-8502(83)90035-6
[13] S. Mertes, F. Schröder, and A. Wiedensohler, The particle
detection
efficiency curve of the TSI-3010 CPC as a function of the
temperature
difference
between saturator and condenser, Aerosol Sci. Technol.
23, 257–261 (1995),
http://dx.doi.org/10.1080/02786829508965310
[14] A. Wiedensohler, D. Orsini, D.S. Covert, D. Coffmann, W.
Cantrell,
M. Havlicek, F.J. Brechtel, L.M. Russell, R.J. Weber, J. Gras,
J.G.
Hudson,
and M. Litchy, Intercomparison study of the size-dependent
counting
efficiency
of 26 condensation particle counters, Aerosol Sci. Technol.
27, 224–242 (1997),
http://dx.doi.org/10.1080/02786829708965469
[15] D.F. Banse, K. Esfeld, M. Hermann, B. Sierau, and
A.Wiedensohler,
Particle
counting efficiency of the TSI CPC 3762 for different operation
parameters,
J. Aerosol Sci.
32,
157–161
(2001),
http://dx.doi.org/10.1016/S0021-8502(00)00060-4
[16] K. Hämeri, I.K. Koponen, P.P. Aalto, and M. Kulmala, The
particle
detection
efficiency of the TSI-3007 condensation particle counter, J.
Aerosol
Sci.
33, 1463–1469 (2002),
http://dx.doi.org/10.1016/S0021-8502(02)00090-3
[17] T. Petäjä, G. Mordas, H. Manninen, P.P. Aalto, K. Hämeri,
and M.
Kulmala,
Detection efficiency of water-based TSI condensation particle
counter
3785,
Aerosol Sci. Technol.
40,
1090–1097 (2006),
http://dx.doi.org/10.1080/02786820600979139
[18] G. Mordas, H.E. Manninen, T. Petäjä, P.P. Aalto, K. Hämeri,
and M.
Kulmala, On operation of the ultra-fine water-based CPC TSI 3786
and
comparison
with other TSI models (TSI 3776, TSI 3772, TSI 3025, TSI 3010,
TSI
3007),
Aerosol Sci. Technol.
42,
152–158
(2008),
http://dx.doi.org/10.1080/02786820701846252
[19] S.V. Hering, M.R. Stolzenburg, F.R. Quant, D.R. Oberreit,
and P.B.
Keady, A laminar-flow, water-based condensation particle counter
(WCPC),
Aerosol Sci. Technol.
39,
659–672
(2005),
http://dx.doi.org/10.1080/02786820500182123
[20] S. Biswas, P.M. Fine, M.D. Geller, S.V. Hering, and C.
Sioutas,
Performance
evaluation of a recently developed water-based condensation
particle
counter,
Aerosol Sci. Technol.
39,
419–427
(2005),
http://dx.doi.org/10.1080/027868290953173