A. Mašalaitė, A. Garbaras, and V. Remeikis
Received 10 August 2012; revised 21 September 2012; accepted 21
September 2012
This paper presents an overview
of
the most common stable isotopes (H, C, N, O, and S) that are
widely
used in environmental research. Much attention is given to the
atmospheric aerosol particle studies involving stable isotopes.
Finally, the experimental results of the carbon stable isotope
composition (δ13C)
in
fuels from various locations (Eastern and Western Europe, China,
Japan) are discussed. Additionally, recommendations for future
research
directions are proposed.
Keywords: aerosols in
atmosphere, stable isotopes, δ13C,
fuel
PACS: 92.60.Mt,
32.10.Bi,
88.20.th
Pateikta tyrimų įvairiuose
aplinkos
sanduose, dažniausiai naudojant H, C, N ir S stabiliuosius
izotopus,
apžvalga. Plačiau aptariamos stabiliųjų izotopų taikymo
galimybės
atmosferos aerozolių tyrimuose, pvz., vertinant radiacinius ir
cheminius procesus atmosferoje bei galimus klimato pokyčius,
identifikuojant aerozolio dalelių šaltinius, nustatant aerozolio
dalelių cheminę sudėtį, vertinant lokalius taršos apkrovos
dydžius bei
įtaką žmogaus sveikatai ir t. t. Galiausiai pateikiamos
eksperimentiškai išmatuotos stabiliųjų anglies izotopų santykio
vertės
naftos produktuose (dyzeline, benzine), naudojamuose Lietuvoje,
Rytų
bei Vakarų Europoje ir kitose pasaulio šalyse. Šios vertės leido
identifikuoti naftos gavybos vietą. Nustatyta, kad Lietuvoje ir
Rytų
Europos šalyse naudojamas dyzelinas ir benzinas yra Rusijoje
išgaunamos
naftos produktai. Daroma išvada, kad izotopų santykio metodas
gali būti
taikomas siekiant nustatyti aerozolio dalelių šaltinius (pvz.,
dyzelino
ir benzino degimo produktus), bet būtina atsižvelgti į pradinį
naftos
produktų izotopų santykį, kuris kinta priklausomai nuo naftos
išgavimo
vietovės.
References
/
Nuorodos
[1] W. Rundel, J.R. Ehleringer, and K.A. Nagy,
Stable Isotopes in Ecological
Research
(Springer-Verlag, New York, 1989),
http://dx.doi.org/10.1007/978-1-4612-3498-2
[2] B. Fry,
Stable Isotope
Ecology
(Springer, USA, 2006),
http://dx.doi.org/10.1007/0-387-33745-8
[3] R. Chesselet, M. Fontugne, P. Buat-Ménard, U. Ezat, and C.
E.
Lambert, The origin of
particulate organic carbon in the marine atmosphere as indicated
by its
stable carbon isotopic composition, Geophys. Res. Lett.
8, 345–348
(1981),
http://dx.doi.org/10.1029/GL008i004p00345
[4] H. Cachier. P. Buat-Ménard, M. Fontugne, and J. Rancher,
Source
terms and source strengths of the carbonaceous aerosol in the
tropics,
J. Atmos. Chem.
3,
469–489
(1985),
http://dx.doi.org/10.1007/BF00053872
[5] H. Cachier, P. Buat-Ménard, M. Fontugne, and R. Chesselet,
Long-range transport of
continentally-derived particulate carbon in the marine
atmosphere:
evidence from stable carbon isotopes studies, Tellus B
38B, 161–177
(1986),
http://dx.doi.org/10.1111/j.1600-0889.1986.tb00184.x
[6] R. Fisseha, M. Saurer, M. Jäggi, R.T.W. Siegwolf, J.
Dommena, S.
Szidat, V. Samburova, and U. Baltensperger, Determination of
primary
and secondary sources of organic acids and carbonaceous aerosols
using
stable carbon isotopes, Atmos. Environ.
43, 431–437 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2008.08.041
[7] V. Ulevicius, S. Byčenkienė, V. Remeikis, A. Garbaras, S.
Kecorius,
J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik,
Characterization
of pollution events in the East Baltic region affected by
regional
biomass fire emissions, Atmos. Res.
98,
190–200 (2010),
http://dx.doi.org/10.1016/j.atmosres.2010.03.021
[8] T. Hui, X. Xianming, R. Wilkins, and T. Yonghun, An
experimental
comparison of gas generation from three oil fractions:
Implications for
the chemical and stable carbon isotopic signatures of oil
cracking gas,
Org. Geochem.
46,
96–112
(2012),
http://dx.doi.org/10.1016/j.orggeochem.2012.01.013
[9] G.H.F. Young, D. McCarroll, N.J. Loader, and A.J.
Kirchhefer, A
500-year record of summer near-ground solar radiation from
tree-ring
stable carbon isotopes, Holocene
20(3),
315–324 (2010),
http://dx.doi.org/10.1177/0959683609351902
[10] N.J. Loader, I. Robertson, and D. McCarroll,
Comparison of stable carbon isotope ratios in the whole wood,
cellulose
and lignin of oak tree-rings, Palaeogeogr. Palaeoclimatol.
Palaeoecol.
196,
395–407
(2003),
http://dx.doi.org/10.1016/S0031-0182(03)00466-8
[11] D. McCarroll, M.H. Gagen, N.J. Loader, I. Robertson,
K.J.
Anchukaitis, S. Los, G.H.F. Young, R. Jalkanen, A. Kirchhefer,
and J.S.
Waterhouse, Correction of tree ring stable carbon isotope
chronologies
for changes in the carbon dioxide content of the atmosphere,
Geochim.
Cosmochim. Acta
73,
1539–1547
(2009),
http://dx.doi.org/10.1016/j.gca.2008.11.041
[12] J. Rudolph, Gas chromatography-isotope ratio mass
spectrometry,
in:
Volatile Organic
Compounds in
the Atmosphere, ed. R. Koppmann (Blackwell Publisher,
Oxford,
2007) pp. 388–466,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-1405131152.html
[13] L.A. Martinelli, P.B. Camargo, L.B.L.S. Lara, R.L.
Victoria, and
P. Artaxo, Stable carbon and nitrogen isotopic composition of
bulk
aerosol particles in a C4 plant landscape of southeast Brazil,
Atmos.
Environ.
36, 2427–2432
(2002),
http://dx.doi.org/10.1016/S1352-2310(01)00454-X
[14] R. Fisseha, M. Saurer, M. Jäggi, S. Szidat, R.T.W.
Siegwolf, and
U. Baltensperger, Determination of stable carbon isotopes of
organic
acids and carbonaceous aerosols in the atmosphere, Rapid Commun.
Mass
Spectrom.
20, 2343–2347
(2006),
http://dx.doi.org/10.1002/rcm.2586
[15] H. Wang, and K. Kawamura, Stable carbon isotopic
composition of
low-molecular-weight dicarboxylic acids and ketoacids in remote
marine
aerosols, J. Geophys. Res.
111,
D07304 (2006),
http://dx.doi.org/10.1029/2005JD006466
[16] H. Yu, P.K. Quinn, G. Feingold, R.A. Kahn, M. Chin, and
S.E.
Schwartz, Remote sensing and
in
situ
measurements of aerosol properties, burdens, and radiative
forcing, in:
Atmospheric Aerosol Properties
and
Climate
Impacts, A Report by U.S. Climate Change Science
Program and the
Subcommittee on Global Change Research (National Aeronautics and
Space
Administration, Washington, D.C., U.S.A., 2009) pp. 44–49,
PDF
[17] H. Katsura, The effect of electrically charged clouds on
the
stable nitrogen isotope ratio and the anion concentrations in
cloud-based aerosols, Int. J. Environ. Res.
6(2), 457–466 (2012)
[18] M.E. Erupe,
Sources and
Source
Processes of Organic Nitrogen Aerosols in the Atmosphere,
All
Graduate Theses and Dissertations (Utah State University, 2008),
retrieved July 23,
http://digitalcommons.usu.edu/etd/196
[19] G. Trakimas, T.D. Jardine, R. Barisevičiūtė, A. Garbaras,
R.
Skipitytė, and V. Remeikis, Ontogenetic dietary shifts in
European
common frog (
Rana temporaria)
revealed by stable isotopes,
Hydrobiologia
675,
87–95
(2011),
http://dx.doi.org/10.1007/s10750-011-0804-3
[20] M. Górka, E. Zwolińska, M. Malkiewicz, D. Lewicka-Szczebak,
and
M.O. Jędrysek, Carbon and nitrogen isotope analyses coupled
withpalynological data of PM10 in Wrocław city (SW Poland)
–assessment
of anthropogenic impact, Isot. Environ. Health Stud.
48,
327–344 (2012),
http://dx.doi.org/10.1080/10256016.2012.639449
[21] E.W. Holt and H.P. Taylor Jr.,
18O/
16O
mapping and hydrogeology of a short-lived (≈10 years) fumarolic
(>500ºC) meteoric–hydrothermal event in the upper part
of the
0.76 Ma Bishop
Tuff outflow sheet, California, J. Volcanol. Geoth. Res.
83, 115–139 (1998),
http://dx.doi.org/10.1016/S0377-0273(98)00014-6
[22] A.J. Kettle, and M.O. Andreae, Flux of dimethylsulfide from
the
oceans: A comparison of updated data sets and flux models, J.
Geophys.
Res.
105, 26793–26808
(2000),
http://dx.doi.org/10.1029/2000JD900252
[23] R.J. Charlson, J.E. Lovelock, M.O. Andreae, and S.G.
Warren,
Oceanic phytoplankton, atmospheric sulfur, cloud albedo and
climate,
Nature
326, 655–661
(1987),
http://dx.doi.org/10.1038/326655a0
[24] L.I. Wassenaar, and K.A. Hobson, Natal origins of migratory
monarch butterflies at wintering colonies in Mexico: New
isotopic
evidence, Proc. Natl. Acad. Sci.
95,
15436–15439 (1998),
http://dx.doi.org/10.1073/pnas.95.26.15436
[25] K.A. Hobson and L.I. Wassenaar, Linking breeding and
wintering
grounds of neotropical migrant songbirds using stable hydrogen
isotopic
analysis of feathers, Oecologia
109,
142–148 (1997),
http://dx.doi.org/10.1007/s004420050068
[26] J.E. Losey, L.S. Rayor, and M.E. Carter, Transgenic pollen
harms
monarch larvae, Nature
399,
214 (1999),
http://dx.doi.org/10.1038/20338
[27] A. Schimmelmann, and M.J. DeNiro, Stable isotopic studies
on
chitin. III. The D/H and
18O/
16O ratios
in
arthropod chitin, Geochim. Cosmochim. Acta
50, 1485–1496 (1986),
http://dx.doi.org/10.1016/0016-7037(86)90322-4
[28] M.F. Estep and H. Dabrowski, Tracing food webs with stable
hydrogen isotopes, Science
209,
1537–1538 (1980),
http://dx.doi.org/10.1126/science.209.4464.1537
[29] A.B. Cormie, H.P. Schwarcz, and J. Gray, Relation between
hydrogen
isotopic ratios of bone collagen and rain, Geochim. Cosmochim.
Acta
58, 377–391 (1994),
http://dx.doi.org/10.1016/0016-7037(94)90471-5
[30] R.F. Miller, P. Fritz, and A.V. Morgan, Climatic
implications of
D/H ratios in beetle chitin, Palaeogeogr. Palaeoclimatol.
Palaeoecol.
66, 277–288 (1988),
http://dx.doi.org/10.1016/0031-0182(88)90204-0
[31] J. Morrison, T. Brockwell, T. Merren, F. Fourel, and A.M.
Phillips,
On-line high-precision stable hydrogen isotopic analyses on
nanoliter
water samples, Anal. Chem.
73,
3570–3575 (2001),
http://dx.doi.org/10.1021/ac001447t
[32] G.J. Bowen, L.I. Wassenaar, and K.A. Hobson, Global
application of
stable hydrogen and oxygen isotopes to wildlife forensics,
Oecologia
143, 337–348 (2005),
http://dx.doi.org/10.1007/s00442-004-1813-y
[33] M. Diaz Somoano, M. Kylander, D.J. Weiss, A. Lopez Anton,
I.
Suarez Ruiz, and R. Martınez Tarazona,
International Conference on Coal Science
and Technology, Nottingham, CD- paper 2P2 (2007)
[34] J. Chen, M. Tan, Y. Li, Y. Zhang, W. Lu, Y. Tong, G. Zhang,
and Y.
Li, A lead isotope record of Shanghai atmospheric lead emissions
in
total suspended particles during the period of phasing out of
leaded
gasoline, Atmos. Environ.
39,
1245–1253 (2005),
http://dx.doi.org/10.1016/j.atmosenv.2004.10.041
[35] W. Wang, X. Liu, L. Zhao, D. Guo, X. Tian, and F. Adams,
Effectiveness of leaded petrol phase-out in Tianjin, China,
based on
the
aerosol lead concentration and isotope abundance ratio, Sci.
Total
Environ.
364, 175–187
(2006),
http://dx.doi.org/10.1016/j.scitotenv.2005.07.002
[36] B.P. Jackson, P.V. Winger, and P.J. Lasier, Atmospheric
lead
deposition to Okefenokee Swamp, Georgia, USA. Environ. Pollut.
130,
445–451 (2004),
http://dx.doi.org/10.1016/j.envpol.2003.12.019
[37] D. Widory, S. Roy, Y. Moulec, G. Goupil, A. Cochere, and C.
Guerrot, The origin of atmospheric particles in Paris: a view
through
carbon and lead isotopes, Atmos. Environ.
38, 953–961 (2004),
http://dx.doi.org/10.1016/j.atmosenv.2003.11.001
[38] J. Heintzenberg, Aerosols – physics and chemistry of
aerosols, in:
Encyclopaedia of Atmospheric
Sciences,
ed. J.R. Holton (Academic Press, Oxford, 2003) pp. 34–40,
http://www.amazon.co.uk/Encyclopedia-Atmospheric-Sciences-Reference-Works/dp/0122270908/
[39] National Research Council (NRC),
Research
Priorities for Airborne Particulate Matter, IV Continuing
Research
Progress (National Academy Press, Washington, USA,
2004),
http://www.nap.edu/catalog.php?record_id=10957
[40] U. Pöschl, Atmospheric aerosols: composition,
transformation,
climate and health effects, Angew. Chem. Int. Ed.
44, 7520–7540
(2005),
http://dx.doi.org/10.1002/anie.200501122
[41] Intergovernmental Panel on Climate Change (IPCC),
Climate Change 2007: The Physical
Science
Basis (Cambridge University Press, UK, 2007),
http://www.cambridge.org/gb/knowledge/isbn/item1164520/
[42] P. Kulkarni, P.A. Baron, and K. Willeke,
Aerosol Measurement: Principles,
Techniques, and Applications, 3rd ed. (John Wiley &
Sons,
New
Jersey, 2011),
http://dx.doi.org/10.1002/9781118001684
[43] H. Wang and K. Kawamura, Stable carbon isotopic composition
of
low-molecular-weight dicarboxylic acids and ketoacids in remote
marine
aerosols. J. Geophys. Res.
111,
D07304 (2006),
http://dx.doi.org/10.1029/2005JD006466
[44] A. Nel, Air pollution-related illness: effects of
particles,
Science
308, 804–806
(2005),
http://dx.doi.org/10.1126/science.1108752
[45] D.B. Kittelson, Engines and nanoparticles: A review, J.
Aerosol
Sci.
29, 575–588
(1998),
http://dx.doi.org/10.1016/S0021-8502(97)10037-4
[46] D. Ceburnis, A. Garbaras, S. Szidat, M. Rinaldi, S. Fahrni,
N.
Perron, L.Wacker, S. Leinert, V. Remeikis, M.C. Facchini, A.S.H.
Prevot, S.G. Jennings, M. Ramonet, and C.D. O’Dowd,
Quantification of
the
carbonaceous matter origin in submicron marine aerosol by
13C
and
14C isotope analysis, Atmos. Chem. Phys.
11, 8593–8606
(2011),
http://dx.doi.org/
[47] D.G. Nash, T. Baer, and M.V. Johnston, Aerosol mass
spectrometry:
An introductory review, Int. J. Mass Spectrom.
258, 2–12 (2006),
http://dx.doi.org/10.1016/j.ijms.2006.09.017
[48] P. Ghosh and W.A. Brand, Stable isotope ratio mass
spectrometry
in global climate change research, Int. J. Mass Spectr.
228, 1–33
(2003),
http://dx.doi.org/10.1016/S1387-3806(03)00289-6
[49] A. Garbaras J. Andriejauskienė, R. Barisevičiūtė, and V.
Remeikis,
Tracing of atmospheric aerosol sources using stable carbon
isotopes,
Lith. J. Phys.
48,
259–264
(2008),
http://dx.doi.org/10.3952/lithjphys.48309
[50] A. Garbaras, I. Rimšelytė, K. Kvietkus, and V. Remeikis,
δ13C values in
size-segregated atmospheric carbonaceous aerosols at a rural
site in
Lithuania, Lith. J. Phys.
49,
229–236 (2009),
http://dx.doi.org/10.3952/lithjphys.49202
[51] V. Remeikis, A. Plukis, R. Plukienė, A. Garbaras, R.
Barisevičiūtė, A. Gudelis, R. Gvozdaitė, G. Duškesas, and L.
Juodis,
Method based on isotope ratio mass spectrometry for evaluation
of
carbon activation in the reactor graphite, Nucl. Eng. Des.
240,
2697–2703 (2010),
http://dx.doi.org/10.1016/j.nucengdes.2010.06.020
[52] S.E. Bush, D.E Pataki, and J.R. Ehleringer, Sources of
variation
in
δ13C of
fossil fuel
emissions in Salt Lake City, USA, Appl.
Geochem.
22, 715–723
(2007),
http://dx.doi.org/10.1016/j.apgeochem.2006.11.001
[53] P.P. Tans,
13C/
12C of industrial CO
2,
in:
Carbon Cycle Modeling,
ed. B. Bolin (John Wiley & Sons, Chichester, New York, 1981)
pp.
127–129
[54] R.J. Andres, G. Marland, T. Boden, and S. Bischof, Carbon
dioxide
emissions from fossil fuel consumption and cement manufacture,
1751–1991, and an estimate of their isotopic composition and
latitudinal distribution, in:
The
Carbon
Cycle, ed. T.M.L. Wigley and D.S. Schimel (Cambridge
University Press, Cambridge, 2000) pp. 53–62,
http://www.cambridge.org/gb/knowledge/isbn/item1115190/
[55] D. Lopez-Veneroni, The stable carbon isotope composition of
PM2.5
and PM10 in Mexico City Metropolitan Area air, Atmos. Environ.
43,
4491–4502 (2009),
http://dx.doi.org/10.1016/j.atmosenv.2009.06.036
[56] D. Widory, Combistibles, fuels and their combustion
products: A
view through carbon isotopes, Combust. Theor. Model.
10, 831–841 (2006),
http://dx.doi.org/10.1080/13647830600720264
[57] M. Górka, P.E. Sauer, D. Lewicka-Szczebak, and M.O.
Jędrysek,
Carbon isotope signature of dissolved inorganic carbon (DIC) in
precipitation and atmospheric CO
2, Environ. Pollut.
159,
294–301 (2011),
http://dx.doi.org/10.1016/j.envpol.2010.08.027
[58] B. Mycke, K. Hall, and P. Leplat, Carbon isotopic
composition of
individual hydrocarbons and associated gases evolved from
micro-scale
sealed vessel (MSSV) pyrolysis of high molecular weight organic
material, Org. Geochem.
21,
787–800 (1994),
http://dx.doi.org/10.1016/0146-6380(94)90020-5