J. Galinis
, M. Karpiński
, K. Dobek
, and A. Piskarskas
Received 6 January 2012; revised 16 April 2012; accepted 22 June
2012
We report on the measurement of
photon coincidence and photon number statistics of the
spontaneous
parametric down-converted radiation excited by incoherent pump.
A high
ratio of photon coincidences in case of multimode acquisition
suggests
that the present technique may find
application in quantum experiments. Experimental and numerical
simulation results confirmed that the coincidence ratio in a
photon
counting experiment is tightly coupled to the coherence of the
pump
beam. An experiment on verification of statistical properties of
the
down-converted radiation allowed us to evaluate the afterpulse
generation probability of the photon counters.
Darbe pateikiami parametrinės
fluorescencijos, žadinamos nekoherentiniu kaupinimu, fotonų
koreliacijos ir statistikos matavimų rezultatai. Didelis
sutampančių
fotonų srautas daugiamodžio šviesolaidžio detekcijos atveju
parodo, kad
pateiktas bifotonio lauko generavimo metodas gali būti taikomas
kvantiniuose eksperimentuose. Eksperimentiniai ir skaitmeninio
modeliavimo rezultatai patvirtina, kad fotonų sutapimo tikimybė
glaudžiai siejasi su kaupinimo pluošto koherentiškumu.
Parametrinės
fluorescencijos fotonų statistikos rezultatai leido įvertinti
naudotų
fotonų detektorių postimpulsų tikimybę.
References
/
Nuorodos
[1] W.H. Louisell, A. Yariv, and A.E. Siegman, Quantum
fluctuations and
noise in parametric processes, Phys. Rev.
124 , 1646–1654 (1961),
http://dx.doi.org/10.1103/PhysRev.124.1646
[2] S.E. Harris, M.K. Oshman, and R.L. Byer, Observation of
tunable
parametric fluorescence, Phys. Rev. Lett.
18 , 732–734 (1967),
http://dx.doi.org/10.1103/PhysRevLett.18.732
[3] F. Sciarrino, G. Vallone, G. Milani, A. Avella, J. Galinis,
R.
Machulka, A.M. Perego, K.Y. Spasibko, A. Allevi, M. Bondani, and
P.
Mataloni, High degree
of entanglement and nonlocality of a two-photon state generated
at 532
nm,
Eur. Phys. J. Spec. Top.
199
,
111–125
(2011),
http://dx.doi.org/10.1140/epjst/e2011-01507-y
[4] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum
cryptography, Rev. Mod. Phys.
74,
145–195 (2002),
http://dx.doi.org/10.1103/RevModPhys.74.145
[5] S. Cialdi, F. Castelli, and M.G.A. Paris, Properties of
entangled
photon pairs generated by a CW laser with small coherence time:
theory
and experiment, J. Mod. Opt.
56,
215 (2009),
http://dx.doi.org/10.1080/09500340802187332
[6] Q. Sun, P.R. Hemmer, and M.S. Zubairy, Quantum lithography
with
classical light: Generation of arbitrary patterns, Phys. Rev. A
75, 065803 (2007),
http://dx.doi.org/10.1103/PhysRevA.75.065803
[7] T. Sleator and H. Weinfurter, Realizable universal quantum
logic
gates, Phys. Rev. Lett.
74,
4087–4090 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.4087
[8] Z. Zhao, K.A. Meyer, W.B. Whitten, and R.W. Shaw, Optical
absorption measurements with parametric down-converted photons,
Anal.
Chem.
80 , 7635 (2008),
http://dx.doi.org/10.1021/ac800911t
[9] A. Halevy, E. Megidish, L. Dovrat, H.S. Eisenberg, P.
Becker, and
L. Bohatý, The biaxial nonlinear crystal BiB
3O
6
as a polarization entangled photon source using non-collinear
type-II
parametric down-conversion, Opt. Express
19, 20420–20434 (2011),
http://dx.doi.org/10.1364/OE.19.020420
[10] C.L. Salter, R.M. Stevenson, I. Farrer, C.A. Nicoll, D.A.
Ritchie,
and A.J. Shields, An entangled-light-emitting diode, Nature
465, 594–597 (2010),
http://dx.doi.org/10.1038/nature09078
[11] D.L. Weinberg, Observation of optical parametric noise
pumped by a
mercury lamp, J. Appl. Phys.
41,
4239–4240 (1970),
http://dx.doi.org/10.1063/1.1658444
[12] G. Tamošauskas, J. Galinis, A. Dubietis, and A. Piskarskas,
Observation of spontaneous parametric down-conversion excited by
high
brightness blue LED, Opt. Express
18,
4310–4315 (2010),
http://dx.doi.org/10.1364/OE.18.004310
[13] J. Galinis, M. Karpiński, G. Tamošauskas, K. Dobek, and A.
Piskarskas, Photon coincidences in spontaneous parametric
down-converted radiation excited by a blue LED in bulk LiIO
3
crystal, Opt. Express
19,
10351–10358 (2011),
http://dx.doi.org/10.1364/OE.19.010351
[14] C.K. Hong, Z.Y. Ou, and L. Mandel, Measurement of
subpicosecond
time intervals between two photons by interference, Phys. Rev.
Lett.
59, 2044–2046
(1987),
http://dx.doi.org/10.1103/PhysRevLett.59.2044
[15] F.T. Arecchi, Measurement of the statistical distribution
of
Gaussian and laser sources, Phys. Rev. Lett.
15, 912–916 (1965),
http://dx.doi.org/10.1103/PhysRevLett.15.912
[16] M. Avenhaus, H.B. Coldenstrodt-Ronge, K. Laiho, W. Mauerer,
I.A.
Walmsley, and C. Silberhorn, Photon number statistics of
multimode
parametric down-conversion, Phys. Rev. Lett.
101, 053601 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.053601
[17] E. Waks, B.C. Sanders, E. Diamanti, and Y. Yamamoto, Highly
nonclassical photon statistics in parametric down-conversion,
Phys.
Rev. A
73, 033814
(2006),
http://dx.doi.org/10.1103/PhysRevA.73.033814
[18] J.W. Goodman,
Statistical
Optics
(John Willey & Sons, Inc., New York, 2000) pp. 465–490,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471399167.html
[19] L. Dovrat, M. Bakstein, D. Istrati, A. Shaham, and H.S.
Eisenberg,
Measurements of the dependence of the photon-number distribution
on the
number
of modes in parametric down-conversion, Opt. Express
20, 2266–2276 (2012),
http://dx.doi.org/10.1364/OE.20.002266
[20] M. Curty, T. Moroder, X. Ma, and N. Lütkenhaus,
Non-Poissonian
statistics from Poissonian light sources with application to
passive
decoy state quantum key distribution, Opt. Lett.
34, 3238–3240 (2009),
http://dx.doi.org/10.1364/OL.34.003238
[21] J. Galinis, G. Tamošauskas, and A. Piskarskas, Modeling of
photon
coincidence and dispersive properties of spontaneous parametric
down-converted
field excited by incoherent source, Opt. Commun.
285, 1289 (2011),
http://dx.doi.org/10.1016/j.optcom.2011.10.072
[22] H. Di Lorenzo Pires, F.M.G.J. Coppens, and M.P. van Exter,
Type-I
spontaneous parametric down-conversion with a strongly focused
pump,
Phys
Rev. A
83, 033837
(2011),
http://dx.doi.org/10.1103/PhysRevA.83.033837
[23] L. Mandel and E. Wolf,
Optical
Coherence
and Quantum Optics (Cambridge University Press, New
York,
1995),
http://www.cambridge.org/lt/knowledge/isbn/item1141490/Optical
Coherence
and Quantum Optics/
[24] L. Campbell, Afterpulse measurement and correction, Rev.
Sci.
Instrum.
63, 5794
(1992),
http://dx.doi.org/10.1063/1.1143365
[25] G.F. Zhang, S.L. Dong, T. Huang, Y. Liu, J. Wang, L.T.
Xiao, and
S.T. Jia, Photon statistical measurement of afterpulse
probability,
Int. J. Mod. Phys. B
22,
1941–1946 (2008),
http://dx.doi.org/10.1142/S0217979208039137