R. Buividas
, M. Mikutis
, A. Greičius
, G. Šlekys
,
and S. Juodkazis
Recent results in high-precision
surface ablation, film removal, ripple formation are presented.
Volume processing via polymerization, marking, dicing, cutting,
and drilling of semiconductor and dielectric materials are
discussed. We focus on processes which can be carried out at a
high throughput in the industrial environment or/and can deliver
functionalities currently not amenable by competing
technologies. Unique features of direct laser writing by
femtosecond laser pulses are highlighted. Methodology for
solutions of engineering tasks is presented. Namely, the laser
irradiation parameters are selected on the basis of the required
processing conditions for the material of a workpiece.
Pristatomi didelio tikslumo
paviršiaus abliacijos, paviršinių sluoksnių pašalinimo ir
raibulių formavimo rezultatai. Aptariamas tūrinis
puslaidininkinių ir dielektrinių medžiagų apdirbimas
polimerizacijos, ženklinimo, pjovimo ir gręžimo būdais.
Nagrinėti procesai, tinkami didelio našumo pramoninėms užduotims
atlikti ir suteikti naujų savybių, kurių neįmanoma įgyvendinti
kitomis šiuolaikinėmis konkuruojančiomis technologijomis.
Aptariamos unikalios tiesioginio lazerinio fabrikavimo
femtosekundiniais lazerio impulsais savybės. Pateikiamos
inžinerinių uždavinių sprendimų metodikos. Lazerinės
spinduliuotės parametrai yra parenkami atsižvelgiant į
apdorojimo sąlygas, reikalingas konkrečiai medžiagai ar
gaminiui.
References
/
Nuorodos
[1] E. Gamaly,
Femtosecond
Laser–Matter Interactions: Theory, Experiments, and
Applications (Pan Stanford Publishing, Singapore,
2011),
http://dx.doi.org/10.4032/9789814267809
[2]
Three-dimensional Laser
Microfabrication: Fundamentals and Applications, eds.
H. Misawa and S. Juodkazis (Wiley, Weinheim, 2006),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527608400.html
[3] L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E.G. Gamaly,
and S. Juodkazis, Laser–matter interaction in transparent
materials: confined microexplosion and jet formation, in:
Extreme
Photonics & Applications , NATO
Science for Peace and Security Series B: Physics and Biophysics
(Springer, Netherlands, 2009) pp. 121–146,
http://dx.doi.org/10.1007/978-90-481-3634-6_8
[4] J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis,
Thermal and optical properties of the
femtosecond-laser-structured and stress-induced birefringent
regions in sapphire, Opt. Express
18 (8), 8300–8310 (2010),
http://dx.doi.org/10.1364/OE.18.008300
[5] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas,
and S. Juodkazis, Mechanisms of three-dimensional structuring of
photo-polymers by tightly focussed femtosecond laser pulses,
Opt. Express
18(10),
10209–10221 (2010),
http://dx.doi.org/10.1364/OE.18.010209
[6] M. Malinauskas, P. Danilevičius, and S. Juodkazis,
Three-dimensional micro-/nano-structuring via direct write
polymerization with picosecond laser pulses, Opt. Express
19(6), 5602–5610 (2011),
http://dx.doi.org/10.1364/OE.19.005602
[7] E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S.
Matsuo, and H. Misawa, Surface nanostructuring of borosilicate
glass by femtosecond nJ energy pulses, Appl. Phys. Lett.
82 (17), 2901–2903 (2003),
http://dx.doi.org/10.1063/1.1570514
[8] L. Bressel, D. de Ligny, C. Sonneville, V.
Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis,
Femtosecond laser induced density changes in GeO
2 and
SiO
2 glasses: fictive temperature effect, Opt. Mater.
Express
1, 605–613
(2011),
http://dx.doi.org/10.1364/OME.1.000605
[9] S. Juodkazis, K. Nishimura, and H. Misawa, Three-dimensional
laser structuring of materials at tight focusing, Chin. Opt.
Lett.
5, S198–S200
(2007),
http://www.opticsinfobase.org/col/abstract.cfm?uri=col-5-101-S198
[10] A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo,
and H. Misawa, Effect of refractive index-mismatch on laser
microfabrication in silica glass, Appl. Phys. A
76, 257–260 (2003),
http://dx.doi.org/10.1007/s00339-002-1447-z
[11] K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura,
S. Juodkazis, and H. Misawa, Chirp effect in hard X-ray
generation from liquid target when irradiated by femtosecond
pulses, Opt. Express
16(17),
12650–12657 (2008),
http://dx.doi.org/10.1364/OE.16.012650
[12] S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional
microfabrication of materials by femtosecond lasers for
photonics applications, J. Appl. Phys.
106(5),
051101 (2009),
http://dx.doi.org/10.1063/1.3216462
[13] A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis,
and H. Misawa, Application of Bessel beams for microfabrication
of dielectrics by femtosecond laser, Jpn. J. Appl. Phys.
40(11A), L1197–L1199 (2001),
http://dx.doi.org/10.1143/JJAP.40.L1197
[14] S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H.
Misawa, Three-dimensional micro- and nano-structuring of
materials by tightly focused laser radiation, Bull. Chem. Soc.
Jpn.
81(4), 411–448
(2008),
http://dx.doi.org/10.1246/bcsj.81.411
[15] M. Duocastella and C.B. Arnold, Bessel and annular beams
for materials processing, Laser Photonics Rev.
6 (5), 607 (2012) pp. 1–15,
http://dx.doi.org/10.1002/lpor.201100031
[16] R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V.
Datsyuk, and S. Juodkazis, Mechanism of fine ripple formation on
surfaces of (semi)transparent materials via a half-wavelength
cavity feedback, Nanotechn.
22, 055304 (2011),
http://dx.doi.org/10.1088/0957-4484/22/5/055304
[17] T. Kudrius, G. Šlekys, and S. Juodkazis, Surface-texturing
of sapphire by femtosecond laser pulses for photonic
applications, J. Phys. D
43(14),
145501 (2010),
http://dx.doi.org/10.1088/0022-3727/43/14/145501
[18] J.E. Sipe, J.F. Young, J.S. Preston, and H.M. van Driel,
Laser-induced periodic surface structure. I. Theory, Phys. Rev.
B
27(2), 1141 (1983),
http://dx.doi.org/10.1103/PhysRevB.27.1141
[19] S. Juodkazis, N. Kujime, H. Okuno, V. Mizeikis, S. Matsuo,
and H. Misawa, Towards nanostructuring of materials by ripples,
in:
CREST and QNN’03 Joint
Int. Workshop (Hyogo, Japan, 21–23 July 2003) pp.
117–121
[20] H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa,
Suppression of ripples on Ni surface via a polarization grating,
Opt. Express
17(6),
4388–4396 (2009),
http://dx.doi.org/10.1364/OE.17.004388
[21] R. Buividas, M. Mikutis, G. Gervinskas, D. Day, G. Slekys,
and S. Juodkazis, Femtosecond laser drilling of optical fibres
for sensing in microfluidic applications, Proc. SPIE
8463, 84630T (2012),
http://dx.doi.org/10.1117/12.929607
[22] A.Y. Vorobyev and C. Guo, Laser turns silicon superwicking,
Opt. Express
18(7),
6455–6460 (2010),
http://dx.doi.org/10.1364/OE.18.006455
[23] G.-W. Römer, M. Jorritsma, D. Arnaldo del Cerro, B. Chang,
V. Liimatainen, Q. Zhou, and B. Huis in ’t Veld, Laser
micro-machining of hydrophobic-hydrophilic patterns for fluid
driven selfalignment in micro-assembly, in:
Proceedings of LPM2011 – the 12th
International Symposium on Laser Precision Microfabrication
(2011),
http://doc.utwente.nl/79554/
[24] R. Buividas, P.R. Stoddart, and S. Juodkazis, Laser
fabricated ripple substrates for surface-enhanced Raman
scattering, Ann. Phys.
524(11),
L5–L10 (2012),
http://dx.doi.org/10.1002/andp.201200140
[25] K.K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa,
Three-dimensional horizontal circular spiral photonic crystals
with stop gaps below 1
μ m, Appl. Phys. Lett.
88(22), 221101 (2006),
http://dx.doi.org/10.1063/1.2207841
[26] A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode,
and S. Juodkazis, Evidence of superdense aluminium synthesized
by ultrafast microexplosion, Nature Commun.
2, 445 (2011),
http://dx.doi.org/10.1038/ncomms1449
[27] S. Juodkazis, H. Misawa, E.G. Gamaly, B. Luther-Davies, L.
Hallo, P. Nicolai, and V.T. Tikhonchuk, Is the nano-explosion
really microscopic?, J. Non-Cryst. Solids
355(18–21), 1160–1162
(2009),
http://dx.doi.org/10.1016/j.jnoncrysol.2009.02.013
[28] M. Mazilu, S. Juodkazis, T. Ebisui, S. Matsuo, and H.
Misawa, Structural characterization of shock-affected sapphire,
Appl. Phys. A
86(2),
197–200 (2007),
http://dx.doi.org/10.1007/s00339-006-3732-8
[29] S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis,
V. Mizeikis, A. Saito, and A. Rode, Structural changes in
femtosecond laser modified regions inside fused silica, J. Opt.
12(12), 124007 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124007
[30] V. Mizeikis, S. Kohara, Y. Onishi, N. Hirao, A. Saito, A.
Vailionis, and S. Juodkazis, Synthesis of high-pressure phases
of silica by laser-induced optical breakdown, Appl. Phys. A
104 (3), 903–906 (2011),
http://dx.doi.org/10.1007/s00339-011-6437-6
[31] J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S.
Juodkazis, Thermal imaging of a heat transport in regions
structured by femtosecond laser, Opt. Express
19(21), 20542–20550 (2011),
http://dx.doi.org/10.1364/OE.19.020542
[32] S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E.G.
Gamaly, Y. Liu, O.A. Louchev, and K. Kitamura, Three-dimensional
recording by tightly focused femtosecond pulses in LiNbO
3,
Appl. Phys. Lett.
89,
062903 (2006),
http://dx.doi.org/10.1063/1.2335364
[33] E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode,
and W. Krolikowski, Modification of refractive index by a single
femtosecond pulse confined inside a bulk of a photo-refractive
crystal, Phys. Rev. B
81(5),
054113 (2010),
http://dx.doi.org/10.1103/PhysRevB.81.054113
[34] S. Juodkazis, V. Mizeikis, M. Sūdžius, H. Misawa, K.
Kitamura, S. Takekawa, E.G. Gamaly, W.Z. Krolikowski, and A.V.
Rode, Laser induced memory bits in photorefractive LiNbO
3
and LiTaO
3, Appl. Phys. A
93(1), 129–133 (2008),
http://dx.doi.org/10.1007/s00339-008-4641-9
[35] V. Mizeikis, H.-B. Sun, A. Marcinkevičius, J. Nishii, S.
Matsuo, S. Juodkazis, and H. Misawa, Femtosecond laser
micro-fabrication for tailoring photonic crystals in resins and
silica, J. Photochem. Photobiol. A
145(1–2), 41–47 (2001),
http://dx.doi.org/10.1016/S1010-6030(01)00565-2
[36] V. Mizeikis, K.K. Seet, S. Juodkazis, and H. Misawa,
Three-dimensional woodpile photonic crystal templates for
infrared spectral range, Opt. Lett.
29(17),
2061–2063 (2004),
http://dx.doi.org/10.1364/OL.29.002061
[37] K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H.
Misawa, Three-dimensional spiral-architecture photonic crystals
obtained by direct laser writing, Adv. Mater.
17(5), 541–545 (2005),
http://dx.doi.org/10.1002/adma.200401527
[38] K.K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, Spiral
three-dimensional photonic crystals for telecomunications
spectral range, Appl. Phys. A
82(4),
683–688 (2005),
http://dx.doi.org/10.1007/s00339-005-3459-y
[39] K.K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa,
Three-dimentional circular spiral potonic crystal structures
recorded by femtosecond pulses, J. Non-Cryst. Solids
352(23–25), 2390–2394
(2006),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.079
[40] S. Juodkazis, V. Mizeikis, K.K. Seet, H. Misawa, and U.G.K.
Wegst, Mechanical properties and tuning of three-dimensional
polymeric photonic crystals, Appl. Phys. Lett.
91(24),
241904 (2007),
http://dx.doi.org/10.1063/1.2822825
[41] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, and H.
Misawa, Two-photon lithography of nanorods in SU-8 photoresist,
Nanotechnol.
16,
846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[42] K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H.
Misawa, N. Tetreault, and S. John, Templating and replication of
spiral photonic crystals for silicon photonics, IEEE J. Sel.
Top. Quant. Electr.
14(4),
1064–1073 (2008),
http://dx.doi.org/10.1109/JSTQE.2008.922909
[43] K.K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa,
Feature-size reduction of photopolymerized structures by
femtosecond optical curing of SU-8, Appl. Phys. Lett.
89, 024106 (2006),
http://dx.doi.org/10.1063/1.2221499
[44] M. Malinauskas, E. Brasselet, and S. Juodkazis, Fine
structuring of integrated micro-optical components using lasers,
SPIE Newsroom (2011),
http://dx.doi.org/10.1117/2.1201107.003708
[45] E. Brasselet, M. Malinauskas, A. Žukauskas, and S.
Juodkazis, Photopolymerized microscopic vortex beam generators:
Precise delivery of optical orbital angular momentum, Appl.
Phys. Lett.
97, 211108
(2010),
http://dx.doi.org/10.1063/1.3517519
[46] M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A.
Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs,
A. Gaidukevičiūtė, I. Sakellari, M.
Farsari, and S. Juodkazis, Femtosecond laser polymerization of
hybrid/integrated micro-optical elements and their
characterization, J. Opt.
12(12),
124010 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124010
[47] J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S.
Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V.
Sirutkaitis, and K. Staliunas, Formation of collimated beams
behind the woodpile photonic crystal, Phys. Rev. A
84, 033812 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.033812
[48] Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H.
Misawa, Freestanding and movable photonic microstructures
fabricated by photopolymerization with femtosecond laser pulses,
J. Micromech. Microeng.
20,
035004 (2010),
http://dx.doi.org/10.1088/0960-1317/20/3/035004