[PDF]     http://dx.doi.org/10.3952/lithjphys.52402

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 301311 (2012)


FEMTOSECOND LASER PROCESSING – A NEW ENABLING TECHNOLOGY
R. Buividasa,b, M. Mikutisc,d, T. Kudrius c,d, A. Greičiusc, G. Šlekysc, and S. Juodkazis a,b
aCentre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology,
Hawthorn, VIC 3122, Australia
E-mail: rbuividas@swin.edu.au
bMelbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, VIC 3168, Australia
cAltechna Co. Ltd. Konstitucijos 23C-604, LT-08105, Vilnius, Lithuania
dLaser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania

Received 26 October 2012; accepted 20 December 2012

Recent results in high-precision surface ablation, film removal, ripple formation are presented. Volume processing via polymerization, marking, dicing, cutting, and drilling of semiconductor and dielectric materials are discussed. We focus on processes which can be carried out at a high throughput in the industrial environment or/and can deliver functionalities currently not amenable by competing technologies. Unique features of direct laser writing by femtosecond laser pulses are highlighted. Methodology for solutions of engineering tasks is presented. Namely, the laser irradiation parameters are selected on the basis of the required processing conditions for the material of a workpiece.
Keywords: solar cells, micro-optical elements, ripples, 3D polymerisation
PACS: 81.16.-c


APDIRBIMAS FEMTOSEKUNDINIU LAZERIU – NAUJA PERSPEKTYVI TECHNOLOGIJA
R. Buividasa,b, M. Mikutisc,d, T. Kudriusc,d , A. Greičiusc, G. Šlekysc, S. Juodkazisa,b
aSvinberno technologijos universitetas, Hawthorn, Australija
bMelburno nanotechnologijos centras, Clayton, Australija
cUAB „Altechna“, Vilnius, Lietuva
dVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva

Pristatomi didelio tikslumo paviršiaus abliacijos, paviršinių sluoksnių pašalinimo ir raibulių formavimo rezultatai. Aptariamas tūrinis puslaidininkinių ir dielektrinių medžiagų apdirbimas polimerizacijos, ženklinimo, pjovimo ir gręžimo būdais.
Nagrinėti procesai, tinkami didelio našumo pramoninėms užduotims atlikti ir suteikti naujų savybių, kurių neįmanoma įgyvendinti kitomis šiuolaikinėmis konkuruojančiomis technologijomis. Aptariamos unikalios tiesioginio lazerinio fabrikavimo femtosekundiniais lazerio impulsais savybės. Pateikiamos inžinerinių uždavinių sprendimų metodikos. Lazerinės spinduliuotės parametrai yra parenkami atsižvelgiant į apdorojimo sąlygas, reikalingas konkrečiai medžiagai ar gaminiui.


References / Nuorodos

[1] E. Gamaly, Femtosecond Laser–Matter Interactions: Theory, Experiments, and Applications (Pan Stanford Publishing, Singapore, 2011),
http://dx.doi.org/10.4032/9789814267809
[2] Three-dimensional Laser Microfabrication: Fundamentals and Applications, eds. H. Misawa and S. Juodkazis (Wiley, Weinheim, 2006),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527608400.html
[3] L. Hallo, C. Mézel, A. Bourgeade, D. Hébert, E.G. Gamaly, and S. Juodkazis, Laser–matter interaction in transparent materials: confined microexplosion and jet formation, in: Extreme Photonics & Applications , NATO Science for Peace and Security Series B: Physics and Biophysics (Springer, Netherlands, 2009) pp. 121–146,
http://dx.doi.org/10.1007/978-90-481-3634-6_8
[4] J. Morikawa, A. Orie, T. Hashimoto, and S. Juodkazis, Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire, Opt. Express 18 (8), 8300–8310 (2010),
http://dx.doi.org/10.1364/OE.18.008300
[5] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses, Opt. Express 18(10), 10209–10221 (2010),
http://dx.doi.org/10.1364/OE.18.010209
[6] M. Malinauskas, P. Danilevičius, and S. Juodkazis, Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses, Opt. Express 19(6), 5602–5610 (2011),
http://dx.doi.org/10.1364/OE.19.005602
[7] E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses, Appl. Phys. Lett. 82 (17), 2901–2903 (2003),
http://dx.doi.org/10.1063/1.1570514
[8] L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect, Opt. Mater. Express 1, 605–613 (2011),
http://dx.doi.org/10.1364/OME.1.000605
[9] S. Juodkazis, K. Nishimura, and H. Misawa, Three-dimensional laser structuring of materials at tight focusing, Chin. Opt. Lett. 5, S198–S200 (2007),
http://www.opticsinfobase.org/col/abstract.cfm?uri=col-5-101-S198
[10] A. Marcinkevicius, V. Mizeikis, S. Juodkazis, S. Matsuo, and H. Misawa, Effect of refractive index-mismatch on laser microfabrication in silica glass, Appl. Phys. A 76, 257–260 (2003),
http://dx.doi.org/10.1007/s00339-002-1447-z
[11] K. Hatanaka, T. Ida, H. Ono, S.-I. Matsushima, H. Fukumura, S. Juodkazis, and H. Misawa, Chirp effect in hard X-ray generation from liquid target when irradiated by femtosecond pulses, Opt. Express 16(17), 12650–12657 (2008),
http://dx.doi.org/10.1364/OE.16.012650
[12] S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional microfabrication of materials by femtosecond lasers for photonics applications, J. Appl. Phys. 106(5), 051101 (2009),
http://dx.doi.org/10.1063/1.3216462
[13] A. Marcinkevicius, S. Juodkazis, S. Matsuo, V. Mizeikis, and H. Misawa, Application of Bessel beams for microfabrication of dielectrics by femtosecond laser, Jpn. J. Appl. Phys. 40(11A), L1197–L1199 (2001),
http://dx.doi.org/10.1143/JJAP.40.L1197
[14] S. Juodkazis, V. Mizeikis, S. Matsuo, K. Ueno, and H. Misawa, Three-dimensional micro- and nano-structuring of materials by tightly focused laser radiation, Bull. Chem. Soc. Jpn. 81(4), 411–448 (2008),
http://dx.doi.org/10.1246/bcsj.81.411
[15] M. Duocastella and C.B. Arnold, Bessel and annular beams for materials processing, Laser Photonics Rev. 6 (5), 607 (2012) pp. 1–15,
http://dx.doi.org/10.1002/lpor.201100031
[16] R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, and S. Juodkazis, Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback, Nanotechn. 22, 055304 (2011),
http://dx.doi.org/10.1088/0957-4484/22/5/055304
[17] T. Kudrius, G. Šlekys, and S. Juodkazis, Surface-texturing of sapphire by femtosecond laser pulses for photonic applications, J. Phys. D 43(14), 145501 (2010),
http://dx.doi.org/10.1088/0022-3727/43/14/145501
[18] J.E. Sipe, J.F. Young, J.S. Preston, and H.M. van Driel, Laser-induced periodic surface structure. I. Theory, Phys. Rev. B 27(2), 1141 (1983),
http://dx.doi.org/10.1103/PhysRevB.27.1141
[19] S. Juodkazis, N. Kujime, H. Okuno, V. Mizeikis, S. Matsuo, and H. Misawa, Towards nanostructuring of materials by ripples, in: CREST and QNN’03 Joint Int. Workshop (Hyogo, Japan, 21–23 July 2003) pp. 117–121
[20] H. Iwase, S. Kokubo, S. Juodkazis, and H. Misawa, Suppression of ripples on Ni surface via a polarization grating, Opt. Express 17(6), 4388–4396 (2009),
http://dx.doi.org/10.1364/OE.17.004388
[21] R. Buividas, M. Mikutis, G. Gervinskas, D. Day, G. Slekys, and S. Juodkazis, Femtosecond laser drilling of optical fibres for sensing in microfluidic applications, Proc. SPIE 8463, 84630T (2012),
http://dx.doi.org/10.1117/12.929607
[22] A.Y. Vorobyev and C. Guo, Laser turns silicon superwicking, Opt. Express 18(7), 6455–6460 (2010),
http://dx.doi.org/10.1364/OE.18.006455
[23] G.-W. Römer, M. Jorritsma, D. Arnaldo del Cerro, B. Chang, V. Liimatainen, Q. Zhou, and B. Huis in ’t Veld, Laser micro-machining of hydrophobic-hydrophilic patterns for fluid driven selfalignment in micro-assembly, in: Proceedings of LPM2011 – the 12th International Symposium on Laser Precision Microfabrication (2011),
http://doc.utwente.nl/79554/
[24] R. Buividas, P.R. Stoddart, and S. Juodkazis, Laser fabricated ripple substrates for surface-enhanced Raman scattering, Ann. Phys. 524(11), L5–L10 (2012),
http://dx.doi.org/10.1002/andp.201200140
[25] K.K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, Three-dimensional horizontal circular spiral photonic crystals with stop gaps below 1 μ m, Appl. Phys. Lett. 88(22), 221101 (2006),
http://dx.doi.org/10.1063/1.2207841
[26] A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, and S. Juodkazis, Evidence of superdense aluminium synthesized by ultrafast microexplosion, Nature Commun. 2, 445 (2011),
http://dx.doi.org/10.1038/ncomms1449
[27] S. Juodkazis, H. Misawa, E.G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V.T. Tikhonchuk, Is the nano-explosion really microscopic?, J. Non-Cryst. Solids 355(18–21), 1160–1162 (2009),
http://dx.doi.org/10.1016/j.jnoncrysol.2009.02.013
[28] M. Mazilu, S. Juodkazis, T. Ebisui, S. Matsuo, and H. Misawa, Structural characterization of shock-affected sapphire, Appl. Phys. A 86(2), 197–200 (2007),
http://dx.doi.org/10.1007/s00339-006-3732-8
[29] S. Juodkazis, S. Kohara, Y. Ohishi, N. Hirao, A. Vailionis, V. Mizeikis, A. Saito, and A. Rode, Structural changes in femtosecond laser modified regions inside fused silica, J. Opt. 12(12), 124007 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124007
[30] V. Mizeikis, S. Kohara, Y. Onishi, N. Hirao, A. Saito, A. Vailionis, and S. Juodkazis, Synthesis of high-pressure phases of silica by laser-induced optical breakdown, Appl. Phys. A 104 (3), 903–906 (2011),
http://dx.doi.org/10.1007/s00339-011-6437-6
[31] J. Morikawa, E. Hayakawa, T. Hashimoto, R. Buividas, and S. Juodkazis, Thermal imaging of a heat transport in regions structured by femtosecond laser, Opt. Express 19(21), 20542–20550 (2011),
http://dx.doi.org/10.1364/OE.19.020542
[32] S. Juodkazis, M. Sudzius, V. Mizeikis, H. Misawa, E.G. Gamaly, Y. Liu, O.A. Louchev, and K. Kitamura, Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3, Appl. Phys. Lett. 89, 062903 (2006),
http://dx.doi.org/10.1063/1.2335364
[33] E. Gamaly, S. Juodkazis, V. Mizeikis, H. Misawa, A. Rode, and W. Krolikowski, Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photo-refractive crystal, Phys. Rev. B 81(5), 054113 (2010),
http://dx.doi.org/10.1103/PhysRevB.81.054113
[34] S. Juodkazis, V. Mizeikis, M. Sūdžius, H. Misawa, K. Kitamura, S. Takekawa, E.G. Gamaly, W.Z. Krolikowski, and A.V. Rode, Laser induced memory bits in photorefractive LiNbO3 and LiTaO3, Appl. Phys. A 93(1), 129–133 (2008),
http://dx.doi.org/10.1007/s00339-008-4641-9
[35] V. Mizeikis, H.-B. Sun, A. Marcinkevičius, J. Nishii, S. Matsuo, S. Juodkazis, and H. Misawa, Femtosecond laser micro-fabrication for tailoring photonic crystals in resins and silica, J. Photochem. Photobiol. A 145(1–2), 41–47 (2001),
http://dx.doi.org/10.1016/S1010-6030(01)00565-2
[36] V. Mizeikis, K.K. Seet, S. Juodkazis, and H. Misawa, Three-dimensional woodpile photonic crystal templates for infrared spectral range, Opt. Lett. 29(17), 2061–2063 (2004),
http://dx.doi.org/10.1364/OL.29.002061
[37] K.K. Seet, V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, Three-dimensional spiral-architecture photonic crystals obtained by direct laser writing, Adv. Mater. 17(5), 541–545 (2005),
http://dx.doi.org/10.1002/adma.200401527
[38] K.K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, Spiral three-dimensional photonic crystals for telecomunications spectral range, Appl. Phys. A 82(4), 683–688 (2005),
http://dx.doi.org/10.1007/s00339-005-3459-y
[39] K.K. Seet, V. Mizeikis, S. Juodkazis, and H. Misawa, Three-dimentional circular spiral potonic crystal structures recorded by femtosecond pulses, J. Non-Cryst. Solids 352(23–25), 2390–2394 (2006),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.079
[40] S. Juodkazis, V. Mizeikis, K.K. Seet, H. Misawa, and U.G.K. Wegst, Mechanical properties and tuning of three-dimensional polymeric photonic crystals, Appl. Phys. Lett. 91(24), 241904 (2007),
http://dx.doi.org/10.1063/1.2822825
[41] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, and H. Misawa, Two-photon lithography of nanorods in SU-8 photoresist, Nanotechnol. 16, 846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[42] K.K. Seet, V. Mizeikis, K. Kannari, S. Juodkazis, H. Misawa, N. Tetreault, and S. John, Templating and replication of spiral photonic crystals for silicon photonics, IEEE J. Sel. Top. Quant. Electr. 14(4), 1064–1073 (2008),
http://dx.doi.org/10.1109/JSTQE.2008.922909
[43] K.K. Seet, S. Juodkazis, V. Jarutis, and H. Misawa, Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8, Appl. Phys. Lett. 89, 024106 (2006),
http://dx.doi.org/10.1063/1.2221499
[44] M. Malinauskas, E. Brasselet, and S. Juodkazis, Fine structuring of integrated micro-optical components using lasers, SPIE Newsroom (2011),
http://dx.doi.org/10.1117/2.1201107.003708
[45] E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97, 211108 (2010),
http://dx.doi.org/10.1063/1.3517519
[46] M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization, J. Opt. 12(12), 124010 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124010
[47] J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, Formation of collimated beams behind the woodpile photonic crystal, Phys. Rev. A 84, 033812 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.033812
[48] Q. Sun, S. Juodkazis, N. Murazawa, V. Mizeikis, and H. Misawa, Freestanding and movable photonic microstructures fabricated by photopolymerization with femtosecond laser pulses, J. Micromech. Microeng. 20, 035004 (2010),
http://dx.doi.org/10.1088/0960-1317/20/3/035004