CONTROL
OF OPTICAL VORTEX DISLOCATIONS USING OPTICAL METHODS
P. Stanislovaitis and V. Smilgevičius
Laser Research Center, Vilnius
University, LT-10222 Vilnius, Lithuania
E-mail: voveraitis@gmail.com
Received 22 March 2012; revised 23 May 2012; accepted 20 September
2012
In this paper we present the
results of theoretical and experimental investigations of the
optical vortex screw-dislocation position control based on
optical vortex interference with the Gaussian beam. Optical
vortices can be controlled by joining a Gaussian beam with a
collinear optical vortex beam and changing the Gaussian beam
intensity and phase. It is shown theoretically and
experimentally that in this way it is possible to precisely
change the optical vortex screw-dislocation position in plane
transverse to propagation direction.
Keywords: optical
vortices, interference, Laguerre-Gaussian beams
PACS: 42.25.Dd,
42.60.Jf
ŠVIESOS SŪKURIŲ DISLOKACIJŲ VALDYMAS OPTINIAIS METODAIS
P. Stanislovaitis, V. Smilgevičius
Vilniaus universiteto Lazerių
tyrimo centras, Vilnius, Lietuva
Straipsnyje pristatomi šviesos
sūkurių dislokacijų valdymo (naudojant interferenciją su Gauso
pluoštu) teorinių ir ekperimentinių tyrimų rezultatai. Šviesos
sūkuriai gali būti valdomi suvedant Gauso pluoštą su kolineariu
šviesos sūkurio pluoštu ir keičiant Gauso pluošto fazę bei
intensyvumą. Ekperimentiškai ir teoriškai parodyta, kad tokiu
būdu įmanoma tiksliai keisti šviesos sūkurio dislokacijų
pozicijas plokštumoje, statmenoje pluošto sklidimo krypčiai
References
/ Nuorodos
[1] J.F. Nye and M.V. Berry, Dislocations in wave trains, Proc.
R. Soc. London A
336,
165–190 (1974),
http://dx.doi.org/10.1098/rspa.1974.0012
[2] V. Bingelyte, J. Leach, J. Courtial, and M.J. Padgett,
Optically controlled three-dimensional rotation of microscopic
objects, Appl. Phys. Lett.
82,
829 (2003),
http://dx.doi.org/10.1063/1.1544067
[3] J. Masajada, M. Leniec, and I. Augustyniak, Optical vortex
scanning inside the Gaussian beam, J. Opt.
13 , 035714 (2011),
http://dx.doi.org/10.1088/2040-8978/13/3/035714
[4] M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and
N.R. Heckenberg, Topological charge and angular momentum of
light beams carrying optical vortices, Phys. Rev. A
56(5), 4064 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.4064
[5] J. Christou, V. Tikhonenko, Y.S. Kivshar, and B.
Luther-Davies, Vortex soliton motion and steering, Opt. Lett.
21(20), 1649 (1996),
http://dx.doi.org/10.1364/OL.21.001649
[6] E.J. Galvez, N. Smiley, and N. Fernandes, Composite optical
vortices formed by collinear Laguerre-Gauss beams, Proc. SPIE
6131, 19–26 (2006),
http://dx.doi.org/10.1117/12.646074
[7] G. Molina-Terriza, J. Recolons, and L. Torner, The curious
arithmetic of optical vortices, Opt. Lett.
25 (16), 1135 (2000),
http://dx.doi.org/10.1364/OL.25.001135
[8] S.M. Baumann, D.M. Kalb, L.H. MacMillan, and E.J. Galvez,
Propagation dynamics of optical vortices due to Gouy phase, Opt.
Express
17(12), 9818
(2009),
http://dx.doi.org/10.1364/OE.17.009818
[9] A.V. Nesterov, V.G. Niziev, and V.P. Yakunin, Generation of
high power radially polarized beam, J. Appl. Phys. D
32, 2871–2875 (1999),
http://dx.doi.org/10.1088/0022-3727/32/22/307