[PDF]     http://dx.doi.org/10.3952/lithjphys.52403

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 295300 (2012)


CONTROL OF OPTICAL VORTEX DISLOCATIONS USING OPTICAL METHODS
P. Stanislovaitis and V. Smilgevičius
Laser Research Center, Vilnius University, LT-10222 Vilnius, Lithuania
E-mail: voveraitis@gmail.com

Received 22 March 2012; revised 23 May 2012; accepted 20 September 2012

In this paper we present the results of theoretical and experimental investigations of the optical vortex screw-dislocation position control based on optical vortex interference with the Gaussian beam. Optical vortices can be controlled by joining a Gaussian beam with a collinear optical vortex beam and changing the Gaussian beam intensity and phase. It is shown theoretically and experimentally that in this way it is possible to precisely change the optical vortex screw-dislocation position in plane transverse to propagation direction.
Keywords: optical vortices, interference, Laguerre-Gaussian beams
PACS: 42.25.Dd, 42.60.Jf


ŠVIESOS SŪKURIŲ DISLOKACIJŲ VALDYMAS OPTINIAIS METODAIS
P. Stanislovaitis, V. Smilgevičius
Vilniaus universiteto Lazerių tyrimo centras, Vilnius, Lietuva

Straipsnyje pristatomi šviesos sūkurių dislokacijų valdymo (naudojant interferenciją su Gauso pluoštu) teorinių ir ekperimentinių tyrimų rezultatai. Šviesos sūkuriai gali būti valdomi suvedant Gauso pluoštą su kolineariu šviesos sūkurio pluoštu ir keičiant Gauso pluošto fazę bei intensyvumą. Ekperimentiškai ir teoriškai parodyta, kad tokiu būdu įmanoma tiksliai keisti šviesos sūkurio dislokacijų pozicijas plokštumoje, statmenoje pluošto sklidimo krypčiai


References / Nuorodos

[1] J.F. Nye and M.V. Berry, Dislocations in wave trains, Proc. R. Soc. London A 336, 165–190 (1974),
http://dx.doi.org/10.1098/rspa.1974.0012
[2] V. Bingelyte, J. Leach, J. Courtial, and M.J. Padgett, Optically controlled three-dimensional rotation of microscopic objects, Appl. Phys. Lett. 82, 829 (2003),
http://dx.doi.org/10.1063/1.1544067
[3] J. Masajada, M. Leniec, and I. Augustyniak, Optical vortex scanning inside the Gaussian beam, J. Opt. 13 , 035714 (2011),
http://dx.doi.org/10.1088/2040-8978/13/3/035714
[4] M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, and N.R. Heckenberg, Topological charge and angular momentum of light beams carrying optical vortices, Phys. Rev. A 56(5), 4064 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.4064
[5] J. Christou, V. Tikhonenko, Y.S. Kivshar, and B. Luther-Davies, Vortex soliton motion and steering, Opt. Lett. 21(20), 1649 (1996),
http://dx.doi.org/10.1364/OL.21.001649
[6] E.J. Galvez, N. Smiley, and N. Fernandes, Composite optical vortices formed by collinear Laguerre-Gauss beams, Proc. SPIE 6131, 19–26 (2006),
http://dx.doi.org/10.1117/12.646074
[7] G. Molina-Terriza, J. Recolons, and L. Torner, The curious arithmetic of optical vortices, Opt. Lett. 25 (16), 1135 (2000),
http://dx.doi.org/10.1364/OL.25.001135
[8] S.M. Baumann, D.M. Kalb, L.H. MacMillan, and E.J. Galvez, Propagation dynamics of optical vortices due to Gouy phase, Opt. Express 17(12), 9818 (2009),
http://dx.doi.org/10.1364/OE.17.009818
[9] A.V. Nesterov, V.G. Niziev, and V.P. Yakunin, Generation of high power radially polarized beam, J. Appl. Phys. D 32, 2871–2875 (1999),
http://dx.doi.org/10.1088/0022-3727/32/22/307