[PDF]     http://dx.doi.org/10.3952/lithjphys.52404

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 312326 (2012)


NANOPHOTONIC LITHOGRAPHY: A VERSATILE TOOL FOR MANUFACTURING FUNCTIONAL THREE-DIMENSIONAL MICRO-/NANO-OBJECTS
M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A. Piskarskas
Laser Research Center, Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
E-mail: mangirdas.malinauskas@ff.vu.lt

Received 30 October 2012 ; accepted 20 December 2012

In this paper, an overview of literature supported by original experimental results on direct laser polymerization of three-dimensional micro-/nano-structuring of various photopolymers is presented. Alternative technologies, principles of threshold based direct laser writing in polymers employing ultrafast lasers, issues of optimization of the laser structuring parameters for increasing fabrication resolution and production throughput are presented and discussed. Examples of woodpile templates and nanogratings are shown as well as an opto-fluidic sensor design for usage in lab-on-chip type devices is demonstrated and its performance is characterized. Additionally, a possibility to produce a three-dimensional electric circuit is introduced.
Keywords: ultrafast laser, 3D microfabrication, nanotechnology, lithography, photopolymers, photoresists, photonic crystals, optofluidics
PACS: 81.16.Rf, 85.85.+j, 42.70.Jk


NANOFOTONINĖ LITOGRAFIJA – UNIVERSALUS BŪDAS FUNKCINIAMS TRIMAČIAMS MIKRODARINIAMS IR NANODARINIAMS FORMUOTI
M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius, E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, A. Piskarskas
Vilniaus universiteto Fizikos fakulteto Kvantinės elektronikos katedra ir Lazerinių tyrimų centas, Vilnius, Lietuva

Pristatomas tiesioginės lazerinės polimerizacijos metodas, pateikiama išsami literatūros apžvalga, palyginamos trimačių mikrodarinių ir nanodarinių formavimo alternatyvios technologijos, paaiškinami fizikiniai principai ir taikymo galimybės. Visa tai paremta originaliais eksperimentiniais autorių gautais rezultatais. Darbe parodomi funkcinių trimačių polimerinių mikrodarinių ir nanodarinių pavyzdžiai, apibūdinamas jų veikimas. Pirmąkart pademonstruojama opto-fluidinio lusto lazerinio formavimo ir jo perkėlimo ant kito padėklo bei integruotos trimatės mikro-elektro grandinės įgyvendinimo galimybės.


References / Nuorodos

[1] S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett. 22(2), 132–134 (1997),
http://dx.doi.org/10.1364/OL.22.000132
[2] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H. Misawa, Femtosecond two-photon stereo-lithography, Appl. Phys. A 73, 561–566 (2001),
http://dx.doi.org/10.1007/s003390100934
[3] C. LaFratta, J.T. Fourkas, T. Baldacchini, and R.A. Farrer, Multiphoton fabrication, Angew. Chem. Int. Ed. 46 , 6238–6258 (2007),
http://dx.doi.org/10.1002/anie.200603995
[4] M. Farsari and B.N. Chichkov, Materials processing: Two-photon fabrication, Nat. Photon. 3, 450–452 (2009),
http://dx.doi.org/10.1038/nphoton.2009.131
[5] N. Anscombe, Direct laser writing, Nat. Photon. 4, 22–23 (2010),
http://dx.doi.org/10.1038/nphoton.2009.250
[6] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, and H. Misawa, Two-photon lithography of nanorods in SU-8 photoresist, Nanotechnology 16, 846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[7] F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, Polymerized nanotips via two-photon photopolymerization, Opt. Express 15(3), 971–976 (2007),
http://dx.doi.org/10.1364/OE.15.000971
[8] S. Park, T. Lim, D.-Y. Yang, N. Cho, and K.-S. Lee, Fabrication of a bunch of sub-30-nm nanofibers inside microchannels using photopolymerization via a long exposure technique, Appl. Phys. Lett. 89(17), 173133 (2006),
http://dx.doi.org/10.1063/1.2363956
[9] D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, Reduction in feature size of two-photon polymerization using SCR-500, Appl. Phys. Lett. 90(7), 071106 (2007),
http://dx.doi.org/10.1063/1.2535504
[10] M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D. Paipulas, V. Purlys, and R. Gadonas, Self-polymerization of nano-fibres and nano-membranes induced by two-photon absorption, Lith. J. Phys. 50(1), 135–140 (2010),
http://dx.doi.org/10.3952/lithjphys.50115
[11] T. Baldacchini, C.N. LaFratta, R.A. Farrer, M.C. Teich, B.E.A. Saleh, M.J. Naughton, and J.T. Fourkas, Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization, J. Appl. Phys. 95, 6072–6076 (2004),
http://dx.doi.org/10.1063/1.1728296
[12] T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional high-aspect-ratio recording in resist, J. Non-Cryst. Solids 354(12–13), 1194 (2008),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.11.048
[13] L.H. Nguyen, M. Straub, and M. Gu, Acrylate-based photopolymer for two-photon microfabrication and photonic applications, Adv. Funct. Mater. 15(2), 209–216 (2005),
http://dx.doi.org/10.1002/adfm.200400212
[14] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, and M. Spitzbart, Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography, J. Micromech. Microeng. 18, 125014 (2008),
http://dx.doi.org/10.1088/0960-1317/18/12/125014
[15] J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics, Opt. Lett. 28(5), 301–303 (2003),
http://dx.doi.org/10.1364/OL.28.000301
[16] T. Tanaka, Plasmonic metamaterials produced by two-photon-induced photoreduction technique, J. Laser Micro/Nanoeng. 3 (3), 152–156 (2008),
http://dx.doi.org/10.2961/jlmn.2008.03.0005
[17] J.C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M. Wegener, Photorealistic images of carpet cloaks, Opt. Express 17 (22), 19328–19336 (2009),
http://dx.doi.org/10.1364/OE.17.019328
[18] T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M. Wegener, Three-dimensional invisibility cloak at optical wavelengths, Science 328(5976), 337–339 (2010),
http://dx.doi.org/10.1126/science.1186351
[19] K. Muamer, D. Guillaume, T.-M. Chang, S. Guenneau, and S. Enoch, Curved trajectories on transformed metal surfaces: Luneburg lens, beam-splitter, invisibility carpet and black hole for surface plasmon polaritons,  arXiv:1102.0900 (2011),
http://arxiv.org/abs/1102.0900v1
[20] A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B.N. Chichkov, Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials, J. Tissue Eng. Regen. Med. 1, 443–449 (2007),
http://dx.doi.org/10.1002/term.57
[21] C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J. Stampfl, and R. Liska, Vinyl esters: Low cytotoxicity monomers for the fabrication of biocompatible 3d scaffolds by lithography based additive manufacturing, J. Polymer. Sci. A Polymer. Chem. 47 (24), 6941–6954 (2009),
http://dx.doi.org/10.1002/pola.23734
[22] F. Claeyssens, E.A. Hasan, A. Gaidukeviciute, D.S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B.N. Chichkov, and M. Farsari, Three-dimensional biodegradable structures fabricated by two-photon polymerization, Langmuir 25 (5), 3219–3223 (2009),
http://dx.doi.org/10.1021/la803803m
[23] D. Psaltis, S.R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics, Nature 442, 381–386 (2006),
http://dx.doi.org/10.1038/nature05060
[24] D. Janasek, J. Franzke, and A. Manz, Scaling and the design of miniaturized chemical-analysis systems, Nature 442 , 374–380 (2006),
http://dx.doi.org/10.1038/nature05059
[25] S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, Highly selective and compact tunable MOEMS photonic crystal Fabry-Perot filter, Opt. Express 14(8), 3129–3137 (2006),
http://dx.doi.org/10.1364/OE.14.003129
[26] S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P. Lutz, Towards micro-assembly of hybrid MOEMS components on a reconfigurable silicon free-space micro-optical bench, J. Micromech. Microeng. 20(4), 045012 (2010),
http://dx.doi.org/ 10.1088/0960-1317/20/4/045012
[27] H.-B. Sun, S. Matsuo, and H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin, Appl. Phys. Lett. 74, 786–788 (1999),
http://dx.doi.org/10.1063/1.123367
[28] R. Borisov, G. Dorojkina, N. Koroteev, V. Kozenkov, S. Magnitskii, D. Malakhov, A. Tarasishin, and A. Zheltikov, Femtosecond two-photon photopolymerization: a method to fabricate optical photonic crystals with controllable parameters, Laser Phys. 8(5), 1105–1108 (1998),
http://www.maik.ru/full/lasphys/98/5/lasphys5_98p1105full.pdf
[29] C. Reinhardt, R. Kiyan, S. Passinger, A.L. Stepanov, A. Ostendorf, and B.N. Chichkov, Rapid laser prototyping of plasmonic components, Appl. Phys. A 89, 321–325 (2007),
http://dx.doi.org/10.1007/s00339-007-4118-2
[30] A. Seidel, C. Ohrt, S. Passinger, C. Reinhardt, R. Kiyan, and B.N. Chichkov, Nanoimprinting of dielectric loaded surface-plasmon-polariton waveguides using masters fabricated by 2-photon polymerization technique, J. Opt. Soc. Am. B 26(4), 810–812 (2009),
http://dx.doi.org/10.1364/JOSAB.26.000810
[31] M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition, Nat. Mater. 7(7), 543–546 (2008),
http://dx.doi.org/10.1038/nmat2197
[32] P.P. Naulleau, C.N. Anderson, J. Chiu, P. Denham, S. George, K.A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, 22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool, Microelectron. Eng. 86 (4–6), 448–455 (2009),
http://dx.doi.org/10.1016/j.mee.2009.03.013
[33] G. Rius Suñé, Electron beam lithography for nanofabrication, PhD Thesis (University of Barcelona, Barcelona, 2008),
http://www.tdx.cat/bitstream/handle/10803/3404/grs1de2.pdf
[34] E. Di Fabrizio, R. Fillipo, S. Cabrini, R. Kumar, F. Perennes, M. Altissimo, L. Businaro, D. Cojac, L. Vaccari, M. Prasciolu, and P. Candeloro, X-ray lithography for micro- and nano-fabrication at ELETTRA for interdisciplinary applications, J. Phys. Condens. Matter 16(33), S3517–S3535 (2004),
http://dx.doi.org/10.1088/0953-8984/16/33/013
[35] H. Schift, Nanoimprint lithography: An old story in modern times? A review, J. Vac. Sci. Technol. B 26 (2), 458–480 (2008),
http://dx.doi.org/10.1116/1.2890972
[36] M. Walther, A. Ortner, H. Meier, U. Löffelmann, P.J. Smith, and J.G. Korvink, Terahertz metamaterials fabricated by inkjet printing, Appl. Phys. Lett. 95(25), 251107 (2009),
http://dx.doi.org/10.1063/1.3276544
[37] T. Boland, X. Tao, B.J. Damon, B. Manley, P. Kesari, S. Jalota, and S. Bhaduri, Drop-on-demand printing of cells and materials for designer tissue constructs, Mater. Sci. Eng. C 27 (3), 372–376 (2007),
http://dx.doi.org/10.1016/j.msec.2006.05.047
[38] H. Benkreira and M.I. Khan, Air entrainment in dip coating under reduced air pressures, Chem. Eng. Sci. 63 (2), 448–459 (2008),
http://dx.doi.org/10.1016/j.ces.2007.09.045
[39] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang, M.S. Abu Bakar, and S.W. Cha, Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends, Biomaterials 24 (18), 3115–3123 (2003),
http://dx.doi.org/10.1016/S0142-9612(03)00131-5
[40] A. Simchi, F. Petzoldt, and H. Pohl, On the development of direct metal laser sintering for rapid tooling, J. Mater. Process. Technol. 141, 319–328 (2003),
http://dx.doi.org/10.1016/S0924-0136(03)00283-8
[41] V. Mizeikis, K.K. Seet, S. Juodkazis, and H. Misawa, Three-dimensional woodpile photonic crystal templates for the infrared spectral range, Opt. Lett. 29(17), 2061–2063 (2004),
http://dx.doi.org/10.1364/OL.29.002061
[42] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, and C.M. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications, Nature Mater. 3 , 444–447 (2004),
http://dx.doi.org/10.1038/nmat1155
[43] J. Serbin, A. Ovsianikov, and B. Chichkov, Fabrication of woodpile structures by two-photon polymerization and investigation of their optical properties, Opt. Express 12, 5221–5228 (2004),
http://dx.doi.org/10.1364/OPEX.12.005221
[44] R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, Micro lens fabrication by means of femtosecond two photon photopolymerization, Opt. Express 14(2), 810–816 (2006),
http://dx.doi.org/10.1364/OPEX.14.000810
[45] M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D. Paipulas, and R. Gadonas, A femtosecond laser-induced two-photon photopolymerization technique for structuring microlenses, J. Opt. 12 (3), 035204 (2010),
http://dx.doi.org/10.1088/2040-8978/12/3/035204
[46] S. Maruo, A. Takaura, and Y. Saito, Optically driven micropump with a twin spiral microrotor, Opt. Express 17, 18525–18532 (2009),
http://dx.doi.org/10.1364/OE.17.018525
[47] D. Wu, Q. Chen, L. Niu, J. Wang, J. Wang, R. Wang, H. Xia, and H. Sun, Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices, Lab Chip 9(16), 2391–2394 (2009),
http://dx.doi.org/10.1039/B902159K
[48] R.J. Narayan, C. Jin, A. Doraiswamy, I.N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D.B. Chrisey, Laser processing of advanced bioceramics, Adv. Eng. Mater. 7(12), 1083–1098 (2005),
http://dx.doi.org/10.1002/adem.200500155
[49] A. Ovsianikov, B. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, and R.J. Narayan, Rapid prototyping of ossicular replacement prostheses, Appl. Surf. Sci. 253(15), 6603–6607 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.01.062
[50] Y.M. Ha, J.W. Choi, and S.H. Lee, Mass production of 3-D microstructures using projection microstereolithography, J. Mech. Sci. Technol. 22(3), 514–521 (2008),
http://dx.doi.org/10.1007/s12206-007-1031-8
[51] I.B. Park, Y.M. Ha, and S.H. Lee, Cross-section segmentation for improving the shape accuracy of microstructure array in projection microstereolithography, Int. J. Adv. Manuf. Technol. 46 , 151–161 (2010),
http://dx.doi.org/10.1007/s00170-009-2065-0
[52] D.-Y. Yang, S.H. Park, T.W. Lim, H.-J. Kong, S.W. Yi, H.K. Yang, and K.-S. Lee, Ultraprecise microreproduction of a three-dimensional artistic sculpture by multipath scanning method in two-photon photopolymerization, Appl. Phys. Lett. 90, 013113 (2007),
http://dx.doi.org/10.1063/1.2425022
[53] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M. Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon photopolymerization for structuring of micro-optical and photonic devices, Proc. SPIE 7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[54] K.E. Gonsalves, L. Merhari, H. Wu, and Y. Hu, Organic–inorganic nanocomposites: Unique resists for nanolithography, Adv. Mater. 13(10), 703–714 (2001),
http://dx.doi.org/10.1002/1521-4095(200105)13:10<703::AID-ADMA703>3.0.CO;2-A
[55] I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B.N. Chichkov, Two-photon polymerization of titanium-containing sol–gel composites for three-dimensional structure fabrication, Appl. Phys. A 100 , 359–364 (2010),
http://dx.doi.org/10.1007/s00339-010-5864-0
[56] T. Tanaka, A. Ishikawa, and S. Kawata, Two-photon-induced reduction of metal ions for fabricating three-dimensional electrically conductive metallic microstructure, Appl. Phys. Lett. 88 , 081107 (2006),
http://dx.doi.org/10.1063/1.2177636
[57] V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K. Juodkazis, and H. Misawa, Fabrication and properties of metalo-dielectric photonic crystal structures for infrared spectral region, Opt. Express 15, 8454–8464 (2007),
http://dx.doi.org/10.1364/OE.15.008454
[58] M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, Photonic metamaterials by direct laser writing and silver chemical vapour deposition, Nat. Mater. 7, 543–546 (2008),
http://dx.doi.org/10.1038/nmat2197
[59] L. Vurth, P. Baldeck, O. St éphan, and G. Vitrant, Two-photon induced fabrication of gold microstructures in polystyrene sulfonate thin films using a ruthenium(II) dye as photoinitiator, Appl. Phys. Lett. 92(17), 171103 (2008),
http://dx.doi.org/10.1063/1.2917810
[60] S.H. Park, T.W. Lim, D.-Y. Yang, R.H. Kim, and K.-S. Lee, Improvement of spatial resolution in nano-stereolithography using radical quencher, Macromol. Res. 14(5), 559–564 (2006),
http://dx.doi.org/10.1007/BF03218724
[61] W. Haske, V.W. Chen, J.M. Hales, W. Dong, S. Barlow, S.R. Marder, and J.W. Perry, 65 nm feature sizes using visible wavelength 3-D multiphoton lithography, Opt. Express 15, 3426–3436 (2007),
http://dx.doi.org/10.1364/OE.15.003426
[62] X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, Improving spatial resolution and reducing aspect ratio in multiphoton polymerization nanofabrication, Appl. Phys. Lett. 92, 091113 (2008),
http://dx.doi.org/10.1063/1.2841042
[63] http://www.nanoscribe.de/
[64] http://www.lzh.de/
[65] http://www.newport.com/
[66] http://www.teemphotonics.com/
[67] S. Passinger, A. Ovsianikov, R. Kiyan, C. Reinhardt, A. Ostendorf, and B.N. Chichkov, Two-photon polymerization for industrial applications, in: Proceedings of LPM2007 (2007)
[68] M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė, T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H. Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V. Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, Laser two-photon polymerization micro- and nanostructuring over a large area on various substrates, Proc. SPIE 7715, 77151F-1 (2010),
http://dx.doi.org/10.1117/12.854507
[69] J. Stampfl, R. Inführ, K. Stadlmann, N. Pucher, V. Schmidt, and R. Liska, Materials for the fabrication of optical waveguides with two photon photopolymerization, in: Proc. Fifth International WLT-Conference on Lasers in Manufacturing (2009),
http://publik.tuwien.ac.at/files/PubDat_175855.pdf
[70] M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P. Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E. Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis, and A. Piskarskas, In vitro and in vivo biocompatibility study on laser 3D microstructurable polymers, Appl. Phys. A 108(3), 751–759 (2012),
http://dx.doi.org/10.1007/s00339-012-6965-8
[71] A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and A. Haverich, Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications, Acta Biomater. 7, 967–974 (2011),
http://dx.doi.org/10.1016/j.actbio.2010.10.023
[72] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, V. Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D micro/nanofabrication of polymers for tissue engineering applications, Opt. Laser Technol. 45 , 518–524 (2013),
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
[73] E. Stankevičius, M. Malinauskas, M. Gedvilas, B. Voisiat, and G. Račiukaitis, Fabrication of periodic micro-structures by multi-photon polymerization using the femtosecond laser and four-beam interference, Mat. Sci. 17(3), 244–248 (2011),
http://dx.doi.org/10.5755/j01.ms.17.3.587
[74] B. Mills, D. Kundys, M. Farsari, S. Mailis, and R.W. Eason, Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams, Appl. Phys. A 108 , 651–655 (2012),
http://dx.doi.org/10.1007/s00339-012-6945-z
[75] H. Lin, B. Jia, and M. Gu, Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication, Opt. Lett. 36(3), 406–408 (2011),
http://dx.doi.org/10.1364/OL.36.000406
[76] S. Passinger, Two-photon polymerization and the application for surface plasmon polaritons, PhD Thesis (Leibniz Universitat, Hannover, 2008) pp. 1–126,
http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS,1fk0=/Buchdetails.html
[77] A. Ovsianikov, S. Passinger, R. Houbertz, and B. Chichkov, Three dimensional material processing with femtosecond lasers, in: Laser Ablation and Its Applications, Springer Series in Optical Sciences, Vol. 129, ed. C. Phipps (Springer, 2007) pp. 121–157,
http://www.springer.com/physics/optics+%26+lasers/book/978-0-387-30452-6
[78] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas, and S. Juodkazis, Mechanisms of three-dimensional structuring of photo-polymers by tightly focussed femtosecond laser pulses, Opt. Express 18(10), 10209–10221 (2010),
http://dx.doi.org/10.1364/OE.18.010209
[79] M. Malinauskas, P. Danilevičius, and S. Juodkazis, Three-dimensional micro-/nano-structuring via direct write polymerization with picosecond laser pulses, Opt. Express 19, 5602–5610 (2011),
http://dx.doi.org/10.1364/OE.19.005602
[80] I. Wang, M. Bouriau, P.L. Baldeck, C. Martineau, and C. Andraud, Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser, Opt. Lett. 27, 1348–1350 (2002),
http://dx.doi.org/10.1364/OL.27.001348
[81] M. Thiel, J. Fischer, G. von Freymann, and M. Wegener, Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532 nm, Appl. Phys. Lett. 97 , 221102 (2010),
http://dx.doi.org/10.1063/1.3521464
[82] M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B.N. Chichkov, and U. Morgner, Two-photon polymerization technique with sub-50 nm resolution by sub-10 fs laser pulses, Opt. Mater. Express 2(7), 942–947 (2012),
http://dx.doi.org/10.1364/OME.2.000942
[83] M. Malinauskas, V. Purlys, M. Rutkauskas, A. Gaidukevičiutė, and R. Gadonas, Femtosecond visible light induced two-photon photopolymerization for 3D micro/nanostructuring in photoresists and photopolymers, Lith. J. Phys. 50(2), 201–208 (2010),
http://dx.doi.org/10.3952/lithjphys.50203
[84] A. Ovsianikov, Investigation of two-photon polymerization technique for applications in photonics and biomedicine, PhD Thesis (Leibniz Universitat Hannover, 2008) pp. 1–116,
https://cuvillier.de/en/ecollection/publications/1104
[85] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas, Two-photon polymerization for fabrication of three-dimensional micro- and nanostructures over a large area, Proc. SPIE 7204 , 72040C (2009),
http://dx.doi.org/10.1117/12.811125
[86] K.-S. Lee, P. Prabhakaran, J. Park, R. Kim, N. Cho, D.-Y. Yang, S. Park, T. Lim, S. Yong, and H. Kong, Recent advances in two-photon lithography, in: CIF’8 Proceedings (2008)
[87] H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata, Scaling laws of voxels in two-photon photopolymerization nanofabrication, Appl. Phys. Lett. 83, 1104 (2003),
http://dx.doi.org/10.1063/1.1599968
[88] 3DPoli@gmail.com
[89] J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S. Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V. Sirutkaitis, and K. Staliunas, Formation of collimated beams behind the woodpile photonic crystal, Phys. Rev. A 84, 033812 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.033812
[90] L. Amato, Y. Gu, N. Bellini, S.M. Eaton, G. Cerullo, and R. Osellame, Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip, Lab Chip 12 , 1135–1142 (2012),
http://dx.doi.org/10.1039/C2LC21116E
[91] A. Ovsianikov, A. Deiwick, S.Van Vlierberghe, P. Dubruel, L. Möller, G. Dräger, and B. Chichkov, Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering, Biomacromolecules 12(4), 851–858 (2011),
http://dx.doi.org/10.1021/bm1015305
[92] S. Passinger, M.S.M. Saifullah, C. Reinhardt, K.R.V. Subramanian, B.N. Chichkov, and M.E. Welland, Direct 3D patterning of TiO2 using femtosecond laser pulses, Adv. Mater. 19 , 1218–1221 (2007),
http://dx.doi.org/10.1002/adma.200602264
[93] M. Hermatschweiler, A. Ledermann, G.A. Ozin, M. Wegener, and G. von Freymann, Fabrication of silicon inverse woodpile photonic crystals, Adv. Funct. Mater. 17, 2273–2277 (2007),
http://dx.doi.org/10.1002/adfm.200601074
[94] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C. Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, 3D conducting nanostructures fabricated using direct laser writing, Opt. Mater. Express 1(4), 586–597 (2011),
http://dx.doi.org/10.1364/OME.1.000586
[95] B. Bhuian, R.J. Winfield, and G.M. Crean, Laser polymerization-based novel lift-off technique, Appl. Surf. Sci. 255, 5150–5153 (2009),
http://dx.doi.org/10.1016/j.apsusc.2008.07.106
[96] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication, ACS Nano 2(11), 2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[97] M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiūtė, Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D. Gray, R. Gadonas, M. Vamvakaki, and M. Farsari, 3D microoptical elements formed in a photostructurable germanium silicate by direct laser writing, Opt. Laser Eng. 50(12), 1785–1788 (2012),
http://dx.doi.org/10.1016/j.optlaseng.2012.07.001
[98] E. Brasselet, M. Malinauskas, A. Žukauskas, and S. Juodkazis, Photopolymerized microscopic vortex beam generators: Precise delivery of optical orbital angular momentum, Appl. Phys. Lett. 97 (21), 211108 (2012),
http://dx.doi.org/10.1063/1.3517519
[99] A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov, and R. Gadonas, Closely packed hexagonal conical microlens array fabricated by direct laser photopolymerization, Appl. Opt. 51 (21), 4995–5003 (2012),
http://dx.doi.org/10.1364/AO.51.004995
[100] M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis, Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization, J. Opt. 12, 124010 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124010
[101] M. Malinauskas, A. Žukauskas, K. Belazaras, K. Tikuišis, V. Purlys, R. Gadonas, and A. Piskarskas, Laser fabrication of various polymer microoptical components, Eur. Phys. J. Appl. Phys. 58 , 20501 (2012),
http://dx.doi.org/10.1051/epjap/2012110475
[102] A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D. Paipulas, M. Vengris, and R. Gadonas, Organic dye doped microstructures for optically active functional devices fabricated via two-photon polymerization technique, Lith. J. Phys. 50(1), 55–61 (2010),
http://dx.doi.org/10.3952/lithjphys.50112
[103] P. Abgrall and A.-M. Gué, Lab-on-chip technologies: making a microfluidic network and coupling it into a complete microsystem – a review, J. Micromech. Microeng. 17, R15–R49 (2007),
http://dx.doi.org/10.1088/0960-1317/17/5/R01
[104] G. Barillaro, S. Merlo, S. Surdo, L.M. Strambini, and F. Carpignano, Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals, Microfluid. Nanofluid. 12, 545–552 (2012),
http://dx.doi.org/10.1007/s10404-011-0896-0
[105] X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, and L. Xu, Coupled optofluidic ring laser for ultrahigh-sensitive sensing, Opt. Express 19(22), 22242–22247 (2011),
http://dx.doi.org/10.1364/OE.19.022242
[106] Y. Xia and G.M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci. 28, 153–184 (1998),
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
[107] S. Rekštyte, A. Žukauskas, V. Purlys, Y. Gordienko, and M. Malinauskas, Direct laser writing of 3D micro/nanostructures on opaque surfaces, Proc. SPIE 8431, 843123 (2012),
http://dx.doi.org/10.1117/12.921387
[108] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G. Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas, Fabrication of micro-tube arrays in photopolymer SZ2080 by using three different methods of a direct laser polymerization technique, J. Micromech. Microeng. 22(6), 065022 (2012),
http://dx.doi.org/10.1088/0960-1317/22/6/065022
[109] M. Malinauskas, P. Danilevičius, D. Baltriukienė, M. Rutkauskas, A. Žukauskas, Ž. Kairytė, G. Bičkauskaitė, V. Purlys, D. Paipulas, V. Bukelskienė, and R. Gadonas, 3D artificial polymeric scaffolds for stem cell growth fabricated by femtosecond laser, Lith. J. Phys. 50 (1), 75–82 (2010),
http://dx.doi.org/10.3952/lithjphys.50121
[110] P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, and M. Malinauskas, Micro-structured polymer scaffolds fabricated by direct laser writing for tissue engineering, J. Biomed. Opt. 17 (8), 081405 (2012),
http://dx.doi.org/10.1117/1.JBO.17.8.081405