M. Malinauskas, G. Kiršanskė, S. Rekštytė, T. Jonavičius,
E. Kaziulionytė, L. Jonušauskas, A. Žukauskas, R. Gadonas, and A.
Piskarskas
In this paper, an overview of
literature supported by original experimental results on direct
laser polymerization of three-dimensional
micro-/nano-structuring of various photopolymers is presented.
Alternative technologies, principles of threshold based direct
laser writing in polymers employing ultrafast lasers, issues of
optimization of the laser structuring parameters for increasing
fabrication resolution and production throughput are presented
and discussed. Examples of woodpile templates and nanogratings
are shown as well as an opto-fluidic sensor design for usage in
lab-on-chip type devices is demonstrated and its performance is
characterized. Additionally, a possibility to produce a
three-dimensional electric circuit is introduced.
Keywords: ultrafast
laser, 3D microfabrication, nanotechnology, lithography,
photopolymers, photoresists, photonic crystals, optofluidics
PACS: 81.16.Rf,
85.85.+j, 42.70.Jk
Pristatomas tiesioginės
lazerinės polimerizacijos metodas, pateikiama išsami literatūros
apžvalga, palyginamos trimačių mikrodarinių ir nanodarinių
formavimo alternatyvios technologijos, paaiškinami fizikiniai
principai ir taikymo galimybės. Visa tai paremta originaliais
eksperimentiniais autorių gautais rezultatais. Darbe parodomi
funkcinių trimačių polimerinių mikrodarinių ir nanodarinių
pavyzdžiai, apibūdinamas jų veikimas. Pirmąkart pademonstruojama
opto-fluidinio lusto lazerinio formavimo ir jo perkėlimo ant
kito padėklo bei integruotos trimatės mikro-elektro grandinės
įgyvendinimo galimybės.
References
/
Nuorodos
[1] S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional
microfabrication with two-photon-absorbed photopolymerization,
Opt. Lett.
22(2),
132–134 (1997),
http://dx.doi.org/10.1364/OL.22.000132
[2] M. Miwa, S. Juodkazis, T. Kawakami, S. Matsuo, and H.
Misawa, Femtosecond two-photon stereo-lithography, Appl. Phys. A
73, 561–566 (2001),
http://dx.doi.org/10.1007/s003390100934
[3] C. LaFratta, J.T. Fourkas, T. Baldacchini, and R.A. Farrer,
Multiphoton fabrication, Angew. Chem. Int. Ed.
46 , 6238–6258 (2007),
http://dx.doi.org/10.1002/anie.200603995
[4] M. Farsari and B.N. Chichkov, Materials processing:
Two-photon fabrication, Nat. Photon.
3, 450–452 (2009),
http://dx.doi.org/10.1038/nphoton.2009.131
[5] N. Anscombe, Direct laser writing, Nat. Photon.
4, 22–23 (2010),
http://dx.doi.org/10.1038/nphoton.2009.250
[6] S. Juodkazis, V. Mizeikis, K.K. Seet, M. Miwa, and H.
Misawa, Two-photon lithography of nanorods in SU-8 photoresist,
Nanotechnology
16,
846–849 (2005),
http://dx.doi.org/10.1088/0957-4484/16/6/039
[7] F. Qi, Y. Li, D. Tan, H. Yang, and Q. Gong, Polymerized
nanotips via two-photon photopolymerization, Opt. Express
15(3), 971–976 (2007),
http://dx.doi.org/10.1364/OE.15.000971
[8] S. Park, T. Lim, D.-Y. Yang, N. Cho, and K.-S. Lee,
Fabrication of a bunch of sub-30-nm nanofibers inside
microchannels using photopolymerization via a long exposure
technique, Appl. Phys. Lett.
89(17), 173133 (2006),
http://dx.doi.org/10.1063/1.2363956
[9] D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X.
Duan, Reduction in feature size of two-photon polymerization
using SCR-500, Appl. Phys. Lett.
90(7), 071106 (2007),
http://dx.doi.org/10.1063/1.2535504
[10] M. Malinauskas, G. Bičkauskaitė, M. Rutkauskas, D.
Paipulas, V. Purlys, and R. Gadonas, Self-polymerization of
nano-fibres and nano-membranes induced by two-photon absorption,
Lith. J. Phys.
50(1),
135–140 (2010),
http://dx.doi.org/10.3952/lithjphys.50115
[11] T. Baldacchini, C.N. LaFratta, R.A. Farrer, M.C. Teich,
B.E.A. Saleh, M.J. Naughton, and J.T. Fourkas, Acrylic-based
resin with favorable properties for three-dimensional two-photon
polymerization, J. Appl. Phys.
95, 6072–6076 (2004),
http://dx.doi.org/10.1063/1.1728296
[12] T. Kondo, S. Juodkazis, V. Mizeikis, and H. Misawa,
Three-dimensional high-aspect-ratio recording in resist, J.
Non-Cryst. Solids
354(12–13),
1194 (2008),
http://dx.doi.org/10.1016/j.jnoncrysol.2006.11.048
[13] L.H. Nguyen, M. Straub, and M. Gu, Acrylate-based
photopolymer for two-photon microfabrication and photonic
applications, Adv. Funct. Mater.
15(2), 209–216 (2005),
http://dx.doi.org/10.1002/adfm.200400212
[14] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister,
R. Kling, A. Ostendorf, and M. Spitzbart, Photopolymers with
tunable mechanical properties processed by laser-based
high-resolution stereolithography, J. Micromech. Microeng.
18, 125014 (2008),
http://dx.doi.org/10.1088/0960-1317/18/12/125014
[15] J. Serbin, A. Egbert, A. Ostendorf, B.N. Chichkov, R.
Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M.
Popall, Femtosecond laser-induced two-photon polymerization of
inorganic–organic hybrid materials for applications in
photonics, Opt. Lett.
28(5),
301–303 (2003),
http://dx.doi.org/10.1364/OL.28.000301
[16] T. Tanaka, Plasmonic metamaterials produced by
two-photon-induced photoreduction technique, J. Laser
Micro/Nanoeng.
3 (3),
152–156 (2008),
http://dx.doi.org/10.2961/jlmn.2008.03.0005
[17] J.C. Halimeh, T. Ergin, J. Mueller, N. Stenger, and M.
Wegener, Photorealistic images of carpet cloaks, Opt. Express
17 (22), 19328–19336
(2009),
http://dx.doi.org/10.1364/OE.17.019328
[18] T. Ergin, N. Stenger, P. Brenner, J. Pendry, and M.
Wegener, Three-dimensional invisibility cloak at optical
wavelengths, Science
328(5976),
337–339 (2010),
http://dx.doi.org/10.1126/science.1186351
[19] K. Muamer, D. Guillaume, T.-M. Chang, S. Guenneau, and S.
Enoch, Curved trajectories on transformed metal surfaces:
Luneburg lens, beam-splitter, invisibility carpet and black hole
for surface plasmon polaritons, arXiv:1102.0900 (2011),
http://arxiv.org/abs/1102.0900v1
[20] A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and
B.N. Chichkov, Two-photon polymerization technique for
microfabrication of CAD-designed 3D scaffolds from commercially
available photosensitive materials, J. Tissue Eng. Regen. Med.
1, 443–449 (2007),
http://dx.doi.org/10.1002/term.57
[21] C. Heller, M. Schwentenwein, G. Russmueller, F. Varga, J.
Stampfl, and R. Liska, Vinyl esters: Low cytotoxicity monomers
for the fabrication of biocompatible 3d scaffolds by lithography
based additive manufacturing, J. Polymer. Sci. A Polymer. Chem.
47 (24), 6941–6954
(2009),
http://dx.doi.org/10.1002/pola.23734
[22] F. Claeyssens, E.A. Hasan, A. Gaidukeviciute, D.S.
Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou,
C. Fotakis, M. Vamvakaki, B.N. Chichkov, and M. Farsari,
Three-dimensional biodegradable structures fabricated by
two-photon polymerization, Langmuir
25 (5), 3219–3223 (2009),
http://dx.doi.org/10.1021/la803803m
[23] D. Psaltis, S.R. Quake, and C. Yang, Developing optofluidic
technology through the fusion of microfluidics and optics,
Nature
442, 381–386
(2006),
http://dx.doi.org/10.1038/nature05060
[24] D. Janasek, J. Franzke, and A. Manz, Scaling and the design
of miniaturized chemical-analysis systems, Nature
442 , 374–380 (2006),
http://dx.doi.org/10.1038/nature05059
[25] S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P.
Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L.
Legratiet, and M. Strassner, Highly selective and compact
tunable MOEMS photonic crystal Fabry-Perot filter, Opt. Express
14(8),
3129–3137
(2006),
http://dx.doi.org/10.1364/OE.14.003129
[26] S. Bargiel, K. Rabenorosoa, C. Clévy, C. Gorecki, and P.
Lutz, Towards micro-assembly of hybrid MOEMS components on a
reconfigurable silicon free-space micro-optical bench, J.
Micromech. Microeng.
20(4),
045012 (2010),
http://dx.doi.org/ 10.1088/0960-1317/20/4/045012
[27] H.-B. Sun, S. Matsuo, and H. Misawa, Three-dimensional
photonic crystal structures achieved with two-photon-absorption
photopolymerization of resin, Appl. Phys. Lett.
74, 786–788 (1999),
http://dx.doi.org/10.1063/1.123367
[28] R. Borisov, G. Dorojkina, N. Koroteev, V. Kozenkov, S.
Magnitskii, D. Malakhov, A. Tarasishin, and A. Zheltikov,
Femtosecond two-photon photopolymerization: a method to
fabricate optical photonic crystals with controllable
parameters, Laser Phys.
8(5),
1105–1108 (1998),
http://www.maik.ru/full/lasphys/98/5/lasphys5_98p1105full.pdf
[29] C. Reinhardt, R. Kiyan, S. Passinger, A.L. Stepanov, A.
Ostendorf, and B.N. Chichkov, Rapid laser prototyping of
plasmonic components, Appl. Phys. A
89, 321–325 (2007),
http://dx.doi.org/10.1007/s00339-007-4118-2
[30] A. Seidel, C. Ohrt, S. Passinger, C. Reinhardt, R. Kiyan,
and B.N. Chichkov, Nanoimprinting of dielectric loaded
surface-plasmon-polariton waveguides using masters fabricated by
2-photon polymerization technique, J. Opt. Soc. Am. B
26(4),
810–812 (2009),
http://dx.doi.org/10.1364/JOSAB.26.000810
[31] M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann,
S. Linden, and M. Wegener, Photonic metamaterials by direct
laser writing and silver chemical vapour deposition, Nat. Mater.
7(7), 543–546 (2008),
http://dx.doi.org/10.1038/nmat2197
[32] P.P. Naulleau, C.N. Anderson, J. Chiu, P. Denham, S.
George, K.A. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G.
Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D.
Niakoula, J. Park, T. Wallow, and S. Wurm, 22-nm half-pitch
extreme ultraviolet node development at the SEMATECH Berkeley
microfield exposure tool, Microelectron. Eng.
86 (4–6), 448–455 (2009),
http://dx.doi.org/10.1016/j.mee.2009.03.013
[33] G.
Rius Suñé, Electron beam
lithography for nanofabrication, PhD Thesis (University of
Barcelona, Barcelona, 2008),
http://www.tdx.cat/bitstream/handle/10803/3404/grs1de2.pdf
[34] E. Di Fabrizio, R. Fillipo, S. Cabrini, R. Kumar, F.
Perennes, M. Altissimo, L. Businaro, D. Cojac, L. Vaccari, M.
Prasciolu, and P. Candeloro, X-ray lithography for micro- and
nano-fabrication at ELETTRA for interdisciplinary applications,
J. Phys. Condens. Matter
16(33),
S3517–S3535 (2004),
http://dx.doi.org/10.1088/0953-8984/16/33/013
[35] H. Schift, Nanoimprint lithography: An old story in modern
times? A review, J. Vac. Sci. Technol. B
26 (2), 458–480 (2008),
http://dx.doi.org/10.1116/1.2890972
[36] M. Walther, A. Ortner, H. Meier, U. Löffelmann, P.J. Smith,
and J.G. Korvink, Terahertz metamaterials fabricated by inkjet
printing, Appl. Phys. Lett.
95(25),
251107
(2009),
http://dx.doi.org/10.1063/1.3276544
[37] T. Boland, X. Tao, B.J. Damon, B. Manley, P. Kesari, S.
Jalota, and S. Bhaduri, Drop-on-demand printing of cells and
materials for designer tissue constructs, Mater. Sci. Eng. C
27 (3), 372–376 (2007),
http://dx.doi.org/10.1016/j.msec.2006.05.047
[38] H. Benkreira and M.I. Khan, Air entrainment in dip coating
under reduced air pressures, Chem. Eng. Sci.
63 (2), 448–459 (2008),
http://dx.doi.org/10.1016/j.ces.2007.09.045
[39] K.H. Tan, C.K. Chua, K.F. Leong, C.M. Cheah, P. Cheang,
M.S. Abu Bakar, and S.W. Cha, Scaffold development using
selective laser sintering of polyetheretherketone–hydroxyapatite
biocomposite blends, Biomaterials
24 (18), 3115–3123 (2003),
http://dx.doi.org/10.1016/S0142-9612(03)00131-5
[40] A. Simchi, F. Petzoldt, and H. Pohl, On the development of
direct metal laser sintering for rapid tooling, J. Mater.
Process. Technol.
141,
319–328 (2003),
http://dx.doi.org/10.1016/S0924-0136(03)00283-8
[41] V. Mizeikis, K.K. Seet, S. Juodkazis, and H. Misawa,
Three-dimensional woodpile photonic crystal templates for the
infrared spectral range, Opt. Lett.
29(17),
2061–2063 (2004),
http://dx.doi.org/10.1364/OL.29.002061
[42] M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K.
Busch, and C.M. Soukoulis, Direct laser writing of
three-dimensional photonic-crystal templates for
telecommunications, Nature Mater.
3 , 444–447 (2004),
http://dx.doi.org/10.1038/nmat1155
[43] J. Serbin, A. Ovsianikov, and B. Chichkov, Fabrication of
woodpile structures by two-photon polymerization and
investigation of their optical properties, Opt. Express
12, 5221–5228 (2004),
http://dx.doi.org/10.1364/OPEX.12.005221
[44] R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang,
Micro lens fabrication by means of femtosecond two photon
photopolymerization, Opt. Express
14(2), 810–816 (2006),
http://dx.doi.org/10.1364/OPEX.14.000810
[45] M. Malinauskas, H. Gilbergs, A. Žukauskas, V. Purlys, D.
Paipulas, and R. Gadonas, A femtosecond laser-induced two-photon
photopolymerization technique for structuring microlenses, J.
Opt.
12 (3), 035204
(2010),
http://dx.doi.org/10.1088/2040-8978/12/3/035204
[46] S. Maruo, A. Takaura, and Y. Saito, Optically driven
micropump with a twin spiral microrotor, Opt. Express
17, 18525–18532 (2009),
http://dx.doi.org/10.1364/OE.17.018525
[47] D. Wu, Q. Chen, L. Niu, J. Wang, J. Wang, R. Wang, H. Xia,
and H. Sun, Femtosecond laser rapid prototyping of nanoshells
and suspending components towards microfluidic devices, Lab Chip
9(16), 2391–2394
(2009),
http://dx.doi.org/10.1039/B902159K
[48] R.J. Narayan, C. Jin, A. Doraiswamy, I.N. Mihailescu, M.
Jelinek, A. Ovsianikov, B. Chichkov, and D.B. Chrisey, Laser
processing of advanced bioceramics, Adv. Eng. Mater.
7(12), 1083–1098 (2005),
http://dx.doi.org/10.1002/adem.200500155
[49] A. Ovsianikov, B. Chichkov, O. Adunka, H. Pillsbury,
A. Doraiswamy, and R.J. Narayan, Rapid prototyping of ossicular
replacement prostheses, Appl. Surf. Sci.
253(15),
6603–6607
(2007),
http://dx.doi.org/10.1016/j.apsusc.2007.01.062
[50] Y.M. Ha, J.W. Choi, and S.H. Lee, Mass production of 3-D
microstructures using projection microstereolithography, J.
Mech. Sci. Technol.
22(3),
514–521 (2008),
http://dx.doi.org/10.1007/s12206-007-1031-8
[51] I.B. Park, Y.M. Ha, and S.H. Lee, Cross-section
segmentation for improving the shape accuracy of microstructure
array in projection microstereolithography, Int. J. Adv. Manuf.
Technol.
46 , 151–161
(2010),
http://dx.doi.org/10.1007/s00170-009-2065-0
[52] D.-Y. Yang, S.H. Park, T.W. Lim, H.-J. Kong, S.W. Yi, H.K.
Yang, and K.-S. Lee, Ultraprecise microreproduction of a
three-dimensional artistic sculpture by multipath scanning
method in two-photon photopolymerization, Appl. Phys. Lett.
90, 013113 (2007),
http://dx.doi.org/10.1063/1.2425022
[53] M. Malinauskas, H. Gilbergs, V. Purlys, A. Žukauskas, M.
Rutkauskas, and R. Gadonas, Femtosecond laser-induced two-photon
photopolymerization for structuring of micro-optical and
photonic devices, Proc. SPIE
7366, 736622 (2009),
http://dx.doi.org/10.1117/12.821776
[54] K.E. Gonsalves, L. Merhari, H. Wu, and Y. Hu,
Organic–inorganic nanocomposites: Unique resists for
nanolithography, Adv. Mater.
13(10), 703–714 (2001),
http://dx.doi.org/10.1002/1521-4095(200105)13:10<703::AID-ADMA703>3.0.CO;2-A
[55] I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C.
Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov,
and B.N. Chichkov, Two-photon polymerization of
titanium-containing sol–gel composites for three-dimensional
structure fabrication, Appl. Phys. A
100 , 359–364 (2010),
http://dx.doi.org/10.1007/s00339-010-5864-0
[56] T. Tanaka, A. Ishikawa, and S. Kawata, Two-photon-induced
reduction of metal ions for fabricating three-dimensional
electrically conductive metallic microstructure, Appl. Phys.
Lett.
88 , 081107
(2006),
http://dx.doi.org/10.1063/1.2177636
[57] V. Mizeikis, S. Juodkazis, R. Tarozaitė, J. Juodkazytė, K.
Juodkazis, and H. Misawa, Fabrication and properties of
metalo-dielectric photonic crystal structures for infrared
spectral region, Opt. Express
15, 8454–8464 (2007),
http://dx.doi.org/10.1364/OE.15.008454
[58] M.S. Rill, C. Plet, M. Thiel, I. Staude, G. von Freymann,
S. Linden, and M. Wegener, Photonic metamaterials by direct
laser writing and silver chemical vapour deposition, Nat. Mater.
7, 543–546 (2008),
http://dx.doi.org/10.1038/nmat2197
[59] L. Vurth, P. Baldeck, O. St
éphan, and G. Vitrant,
Two-photon induced fabrication of gold microstructures in
polystyrene sulfonate thin films using a ruthenium(II) dye as
photoinitiator, Appl. Phys. Lett.
92(17), 171103 (2008),
http://dx.doi.org/10.1063/1.2917810
[60] S.H. Park, T.W. Lim, D.-Y. Yang, R.H. Kim, and K.-S. Lee,
Improvement of spatial resolution in nano-stereolithography
using radical quencher, Macromol. Res.
14(5), 559–564 (2006),
http://dx.doi.org/10.1007/BF03218724
[61] W. Haske, V.W. Chen, J.M. Hales, W. Dong, S. Barlow, S.R.
Marder, and J.W. Perry, 65 nm feature sizes using visible
wavelength 3-D multiphoton lithography, Opt. Express
15, 3426–3436 (2007),
http://dx.doi.org/10.1364/OE.15.003426
[62] X.-Z. Dong, Z.-S. Zhao, and X.-M. Duan, Improving spatial
resolution and reducing aspect ratio in multiphoton
polymerization nanofabrication, Appl. Phys. Lett.
92, 091113 (2008),
http://dx.doi.org/10.1063/1.2841042
[63]
http://www.nanoscribe.de/
[64]
http://www.lzh.de/
[65]
http://www.newport.com/
[66]
http://www.teemphotonics.com/
[67] S. Passinger, A. Ovsianikov, R. Kiyan, C. Reinhardt, A.
Ostendorf, and B.N. Chichkov, Two-photon polymerization for
industrial applications, in:
Proceedings
of LPM2007 (2007)
[68] M. Malinauskas, V. Purlys, A. Žukauskas, G. Bičkauskaitė,
T. Gertus, P. Danilevičius, D. Paipulas, M. Rutkauskas, H.
Gilbergs, D. Baltriukienė, L. Bukelskis, R. Širmenis, V.
Bukelskienė, R. Gadonas, V. Sirvydis, and A. Piskarskas, Laser
two-photon polymerization micro- and nanostructuring over a
large area on various substrates, Proc. SPIE
7715, 77151F-1 (2010),
http://dx.doi.org/10.1117/12.854507
[69] J. Stampfl, R. Inführ, K. Stadlmann, N. Pucher, V. Schmidt,
and R. Liska, Materials for the fabrication of optical
waveguides with two photon photopolymerization, in:
Proc. Fifth International
WLT-Conference on Lasers in Manufacturing (2009),
http://publik.tuwien.ac.at/files/PubDat_175855.pdf
[70] M. Malinauskas, D. Baltriukiene, A. Kraniauskas, P.
Danilevicius, R. Jarasiene, R. Sirmenis, A. Zukauskas, E.
Balciunas, V. Purlys, R. Gadonas, V. Bukelskiene, V. Sirvydis,
and A. Piskarskas, In vitro and in vivo biocompatibility study
on laser
3D microstructurable polymers, Appl. Phys. A
108(3),
751–759 (2012),
http://dx.doi.org/10.1007/s00339-012-6965-8
[71] A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S.
Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and
A. Haverich, Three-dimensional laser micro- and nano-structuring
of acrylated poly(ethylene glycol) materials and evaluation of
their cytoxicity for tissue engineering applications, Acta
Biomater.
7, 967–974
(2011),
http://dx.doi.org/10.1016/j.actbio.2010.10.023
[72] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
R. Širmenis, D. Baltriukienė, V. Bukelskienė, R. Gadonas, V.
Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D
micro/nanofabrication of polymers for tissue engineering
applications, Opt. Laser Technol.
45 , 518–524 (2013),
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
[73] E. Stankevičius, M. Malinauskas, M. Gedvilas, B. Voisiat,
and G. Račiukaitis, Fabrication of periodic micro-structures by
multi-photon polymerization using the femtosecond laser and
four-beam interference, Mat. Sci.
17(3), 244–248 (2011),
http://dx.doi.org/10.5755/j01.ms.17.3.587
[74] B. Mills, D. Kundys, M. Farsari, S. Mailis, and R.W. Eason,
Single-pulse multiphoton fabrication of high aspect ratio
structures with sub-micron features using vortex beams, Appl.
Phys. A
108 , 651–655
(2012),
http://dx.doi.org/10.1007/s00339-012-6945-z
[75] H. Lin, B. Jia, and M. Gu, Dynamic generation of Debye
diffraction-limited multifocal arrays for direct laser printing
nanofabrication, Opt. Lett.
36(3), 406–408 (2011),
http://dx.doi.org/10.1364/OL.36.000406
[76] S. Passinger, Two-photon polymerization and the application
for surface plasmon polaritons, PhD Thesis (Leibniz Universitat,
Hannover, 2008) pp. 1–126,
http://www.cuvillier.de/flycms/de/html/30/-UickI3zKPS,1fk0=/Buchdetails.html
[77] A. Ovsianikov, S. Passinger, R. Houbertz, and B. Chichkov,
Three dimensional material processing with femtosecond lasers,
in:
Laser Ablation and Its
Applications, Springer Series in Optical Sciences,
Vol. 129, ed. C. Phipps (Springer, 2007) pp. 121–157,
http://www.springer.com/physics/optics+%26+lasers/book/978-0-387-30452-6
[78] M. Malinauskas, A. Žukauskas, G. Bičkauskaitė, R. Gadonas,
and S. Juodkazis, Mechanisms of three-dimensional structuring of
photo-polymers by tightly focussed femtosecond laser pulses,
Opt. Express
18(10),
10209–10221 (2010),
http://dx.doi.org/10.1364/OE.18.010209
[79] M. Malinauskas, P. Danilevičius, and S. Juodkazis,
Three-dimensional micro-/nano-structuring via direct write
polymerization with picosecond laser pulses, Opt. Express
19, 5602–5610 (2011),
http://dx.doi.org/10.1364/OE.19.005602
[80] I. Wang, M. Bouriau, P.L. Baldeck, C. Martineau, and C.
Andraud, Three-dimensional microfabrication by
two-photon-initiated polymerization with a low-cost microlaser,
Opt. Lett.
27,
1348–1350 (2002),
http://dx.doi.org/10.1364/OL.27.001348
[81] M. Thiel, J. Fischer, G. von Freymann, and M. Wegener,
Direct laser writing of three-dimensional submicron structures
using a continuous-wave laser at 532 nm, Appl. Phys. Lett.
97 , 221102 (2010),
http://dx.doi.org/10.1063/1.3521464
[82] M. Emons, K. Obata, T. Binhammer, A. Ovsianikov, B.N.
Chichkov, and U. Morgner, Two-photon polymerization technique
with sub-50 nm resolution by sub-10 fs laser pulses, Opt. Mater.
Express
2(7), 942–947
(2012),
http://dx.doi.org/10.1364/OME.2.000942
[83] M. Malinauskas, V. Purlys, M. Rutkauskas, A.
Gaidukevičiutė, and R. Gadonas, Femtosecond visible light
induced two-photon photopolymerization for 3D
micro/nanostructuring in photoresists and photopolymers, Lith.
J. Phys.
50(2), 201–208
(2010),
http://dx.doi.org/10.3952/lithjphys.50203
[84] A. Ovsianikov, Investigation of two-photon polymerization
technique for applications in photonics and biomedicine, PhD
Thesis (Leibniz Universitat Hannover, 2008) pp. 1–116,
https://cuvillier.de/en/ecollection/publications/1104
[85] M. Malinauskas, V. Purlys, M. Rutkauskas, and R. Gadonas,
Two-photon polymerization for fabrication of three-dimensional
micro- and nanostructures over a large area, Proc. SPIE
7204 , 72040C (2009),
http://dx.doi.org/10.1117/12.811125
[86] K.-S. Lee, P. Prabhakaran, J. Park, R. Kim, N. Cho, D.-Y.
Yang, S. Park, T. Lim, S. Yong, and H. Kong, Recent advances in
two-photon lithography, in:
CIF’8
Proceedings (2008)
[87] H.-B. Sun, K. Takada, M.-S. Kim, K.-S. Lee, and S. Kawata,
Scaling laws of voxels in two-photon photopolymerization
nanofabrication, Appl. Phys. Lett.
83, 1104 (2003),
http://dx.doi.org/10.1063/1.1599968
[88]
3DPoli@gmail.com
[89] J. Trull, L. Maigyte, V. Mizeikis, M. Malinauskas, S.
Juodkazis, C. Cojocaru, M. Rutkauskas, M. Peckus, V.
Sirutkaitis, and K. Staliunas, Formation of collimated beams
behind the woodpile photonic crystal, Phys. Rev. A
84, 033812 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.033812
[90] L. Amato, Y. Gu, N. Bellini, S.M. Eaton, G. Cerullo, and R.
Osellame, Integrated three-dimensional filter separates
nanoscale from microscale elements in a microfluidic chip, Lab
Chip
12 , 1135–1142
(2012),
http://dx.doi.org/10.1039/C2LC21116E
[91] A. Ovsianikov, A. Deiwick, S.Van Vlierberghe, P. Dubruel,
L. Möller, G. Dräger, and B. Chichkov, Laser fabrication of
three-dimensional CAD scaffolds from photosensitive gelatin for
applications in tissue engineering, Biomacromolecules
12(4), 851–858 (2011),
http://dx.doi.org/10.1021/bm1015305
[92] S. Passinger, M.S.M. Saifullah, C. Reinhardt, K.R.V.
Subramanian, B.N. Chichkov, and M.E. Welland, Direct 3D
patterning of TiO
2 using femtosecond laser pulses,
Adv. Mater.
19 ,
1218–1221 (2007),
http://dx.doi.org/10.1002/adma.200602264
[93] M. Hermatschweiler, A. Ledermann, G.A. Ozin, M. Wegener,
and G. von Freymann, Fabrication of silicon inverse woodpile
photonic crystals, Adv. Funct. Mater.
17, 2273–2277 (2007),
http://dx.doi.org/10.1002/adfm.200601074
[94] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C.
Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, 3D
conducting nanostructures fabricated using direct laser writing,
Opt. Mater. Express
1(4),
586–597 (2011),
http://dx.doi.org/10.1364/OME.1.000586
[95] B. Bhuian, R.J. Winfield, and G.M. Crean, Laser
polymerization-based novel lift-off technique, Appl. Surf. Sci.
255, 5150–5153 (2009),
http://dx.doi.org/10.1016/j.apsusc.2008.07.106
[96] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B.
MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki,
M. Farsari, and C. Fotakis, Ultra-low shrinkage hybrid
photosensitive material for two-photon polymerization
microfabrication, ACS Nano
2(11),
2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[97] M. Malinauskas, A. Žukauskas, V. Purlys, A. Gaidukevičiūtė,
Z. Balevičius, A. Piskarskas, C. Fotakis, S. Pissadakis, D.
Gray, R. Gadonas, M. Vamvakaki, and M. Farsari, 3D microoptical
elements formed in a photostructurable germanium silicate by
direct laser writing, Opt. Laser Eng.
50(12), 1785–1788 (2012),
http://dx.doi.org/10.1016/j.optlaseng.2012.07.001
[98] E. Brasselet, M. Malinauskas, A. Žukauskas, and S.
Juodkazis, Photopolymerized microscopic vortex beam generators:
Precise delivery of optical orbital angular momentum, Appl.
Phys. Lett.
97 (21),
211108 (2012),
http://dx.doi.org/10.1063/1.3517519
[99] A. Žukauskas, M. Malinauskas, C. Reinhardt, B.N. Chichkov,
and R. Gadonas, Closely packed hexagonal conical microlens array
fabricated by direct laser photopolymerization, Appl. Opt.
51 (21), 4995–5003 (2012),
http://dx.doi.org/10.1364/AO.51.004995
[100] M. Malinauskas, A. Žukauskas, V. Purlys, K. Belazaras, A.
Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A.
Gaidukevičiūtė, I. Sakellari, M. Farsari, and S. Juodkazis,
Femtosecond laser polymerization of hybrid/integrated
micro-optical elements and their characterization, J. Opt.
12, 124010 (2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124010
[101] M. Malinauskas, A. Žukauskas, K. Belazaras, K. Tikuišis,
V. Purlys, R. Gadonas, and A. Piskarskas, Laser fabrication of
various polymer microoptical components, Eur. Phys. J. Appl.
Phys.
58 , 20501
(2012),
http://dx.doi.org/10.1051/epjap/2012110475
[102] A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D.
Paipulas, M. Vengris, and R. Gadonas, Organic dye doped
microstructures for optically active functional devices
fabricated via two-photon polymerization technique, Lith. J.
Phys.
50(1), 55–61
(2010),
http://dx.doi.org/10.3952/lithjphys.50112
[103] P. Abgrall and A.-M. Gué, Lab-on-chip technologies: making
a microfluidic network and coupling it into a complete
microsystem – a review, J. Micromech. Microeng.
17, R15–R49 (2007),
http://dx.doi.org/10.1088/0960-1317/17/5/R01
[104] G. Barillaro, S. Merlo, S. Surdo, L.M. Strambini, and F.
Carpignano, Integrated optofluidic microsystem based on vertical
high-order one-dimensional silicon photonic crystals,
Microfluid. Nanofluid.
12,
545–552 (2012),
http://dx.doi.org/10.1007/s10404-011-0896-0
[105] X. Zhang, L. Ren, X. Wu, H. Li, L. Liu, and L. Xu, Coupled
optofluidic ring laser for ultrahigh-sensitive sensing, Opt.
Express
19(22),
22242–22247 (2011),
http://dx.doi.org/10.1364/OE.19.022242
[106] Y. Xia and G.M. Whitesides, Soft lithography, Annu. Rev.
Mater. Sci.
28, 153–184
(1998),
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
[107] S. Rekštyte, A. Žukauskas, V. Purlys, Y. Gordienko, and M.
Malinauskas, Direct laser writing of 3D micro/nanostructures on
opaque surfaces, Proc. SPIE
8431,
843123 (2012),
http://dx.doi.org/10.1117/12.921387
[108] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G.
Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas,
Fabrication of micro-tube arrays in photopolymer SZ2080 by using
three different methods of a direct laser polymerization
technique, J. Micromech. Microeng.
22(6),
065022 (2012),
http://dx.doi.org/10.1088/0960-1317/22/6/065022
[109] M. Malinauskas, P. Danilevičius, D. Baltriukienė, M.
Rutkauskas, A. Žukauskas, Ž. Kairytė, G. Bičkauskaitė, V.
Purlys, D. Paipulas, V. Bukelskienė, and R. Gadonas, 3D
artificial polymeric scaffolds for stem cell growth fabricated
by femtosecond laser, Lith. J. Phys.
50 (1), 75–82 (2010),
http://dx.doi.org/10.3952/lithjphys.50121
[110] P. Danilevicius, S. Rekstyte, E. Balciunas, A.
Kraniauskas, R. Jarasiene, R. Sirmenis, D. Baltriukiene, V.
Bukelskiene, R. Gadonas, and M. Malinauskas, Micro-structured
polymer scaffolds fabricated by direct laser writing for tissue
engineering, J. Biomed. Opt.
17
(8), 081405 (2012),
http://dx.doi.org/10.1117/1.JBO.17.8.081405