D. Paipulas, A. Balskienė, and V. Sirutkaitis
In this paper we present
experimental results on the behaviour of light supercontinuum
generation and filamentation when ultrafast laser induced
material modifications are accumulating in fused silica. We show
that due to material modification supercontinuum spectrum starts
to shrink and its intensity rapidly decreases; this rate is
highly affected by the laser pulse repetition rate. The filament
tends to split along the beam propagating path resulting in
inhomogeneous distribution of the modified material.
Keywords: femtosecond
micromachining, the material modification, filamentation,
supercontinuum
PACS: 42.62.Cf,
42.65.Sf, 42.70.Ce
Pateikiami eksperimentiniai
rezultatai, gauti tiriant lazeriu modifikuotų darinių poveikį
netiesiniams reiškiniams, vykstantiems lydyto kvarco stikle.
Parodoma, kad dėl modifikacijų didelio pasikartojimo dažnio
impulsais kuriamas superkontinuumas sparčiai silpsta, vyksta
spektro siaurėjimas ir trumpabangio krašto slinkimas link
ilgesniųjų bangų. Parodoma, kad šviesos gija lydytame kvarce
skyla išilgai pluošto sklidimo krypties, o šis skilimas lemia
nevienalyčius modifikuotos medžiagos darinius.
References
/
Nuorodos
[1] K.M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writing
waveguides in glass with a femtosecond laser, Opt. Lett.
21(21), 1729–1731 (1996),
http://dx.doi.org/10.1364/OL.21.001729
[2]
Femtosecond Laser
Micromachining: Photonic and Microfluidic Devices in
Transparent Materials, eds. R. Osellame, G. Cerullo,
and R. Ramponi (Springer, 2012),
http://www.springer.com/physics/optics+%26+lasers/book/978-3-642-23365-4
[3] A. Couairon and A. Mysyrowicz, Fermtosecond filamentation in
transparent media, Phys. Rep.
441(2–4),
47–189
(2007),
http://dx.doi.org/10.1016/j.physrep.2006.12.005
[4] S.L. Chin,
Femtosecond
Laser Filamentation (Springer, 2010),
http://dx.doi.org/10.1007/978-1-4419-0688-5
[5] L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade,
S. Tzortzakis, and A. Mysyrowicz, Femtosecond laser-induced
damage and filamentary propagation in fused silica, Phys. Rev.
Lett.
89 (18), 186601
(2002),
http://dx.doi.org/10.1103/PhysRevLett.89.186601
[6] N.T. Nguyen, A. Saliminia, W. Liu, S.L. Chin, and R. Vallée,
Optical breakdown versus filamentation in fused silica by use of
femtosecond infrared laser pulses, Opt. Lett.
28(17), 1591–1593 (2003),
http://dx.doi.org/10.1364/OL.28.001591
[7] W. Watanabe, T. Tamaki, and K. Itoh, Filamentation in laser
microprocessing and microwelding, Proc. SPIE
6733 , 67332F (2007),
http://dx.doi.org/10.1117/12.753150
[8] E.O. Smetanina, A.E. Dormidonov, and V.P. Kandidov,
Supercontinuum generation in filamentation of femtosecond laser
pulse in fused silica, Proc. SPIE
8159, 81590L (2011),
http://dx.doi.org/10.1117/12.893108
[9] D.V. Skryabin and A.V. Gorbach, Colloquium: Looking at a
soliton through the prism of optical supercontinuum, Rev. Mod.
Phys
82, 1287–1299
(2010),
http://dx.doi.org/10.1103/RevModPhys.82.1287
[10] D. Faccio, A. Averchi, A. Lotti, M. Kolesik, J.V. Moloney,
A. Couairon, and P. Di Trapani, Generation and control of
extreme blueshifted continuum peaks in optical Kerr media, Phys.
Rev. A
78(3), 033825
(2008),
http://dx.doi.org/10.1103/PhysRevA.78.033825
[11] P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P.
D’Oliveira, P. Meynadier, and M. Perdrix, Subpicosecond study of
carrier trapping dynamics in wide-band-gap crystals. Phys. Rev.
B
55(9), 5799–5810
(1997),
http://dx.doi.org/10.1103/PhysRevB.55.5799
[12] C. Itoh, K. Tanimura, and N. Itoh, Optical studies of
self-trapped excitons in SiO
2, J. Phys. C Solid State
Phys.
21(26),
4693–4702 (1988),
http://dx.doi.org/10.1088/0022-3719/21/26/017
[13] J.W. Chan, T.R. Huser, S.H. Risbud, and D.M. Krol,
Modification of the fused silica glass network associated with
waveguide fabrication using femtosecond laser pulses, Appl.
Phys. A
76, 367–372
(2003),
http://dx.doi.org/10.1007/s00339-002-1822-9
[14] D. Blömer, A. Szameit, F. Dreisow, T. Schreiber, S. Nolte,
and A. Tünnermann, Nonlinear refractive index of
fs-laser-written waveguides in fused silica, Opt. Express
14(6),
2151–2157 (2006),
http://dx.doi.org/10.1364/OE.14.002151
[15] S.L. Chin, A. Brodeur, S. Petit, O.G. Kosareva, and V.P.
Kandidov, Filamentation and supercontinuum generation during the
propagation of powerful ultrashort laser pulses in optical media
(white light laser), J. Nonlinear Opt. Phys. Mater.
8(1), 121–146 (1999),
http://dx.doi.org/10.1142/S0218863599000096
[16] A. Dubietis, E. Kučinskas, G. Tamošauskas, E. Gaižauskas,
M.A. Porras, and P.D. Trapani, Self-reconstruction of light
filaments, Opt. Lett.
29(24),
2893–2895 (2004),
http://dx.doi.org/10.1364/OL.29.002893
[17] V. Sirutkaitis, E. Gaizauskas, V. Kudriashov, M.
Barkauskas, V. Vaicaitis, R. Grigonis, and A.S. Piskarskas,
Self-guiding supercontinuum generation and damage in bulk
materials induced by femtosecond pulses, Proc. SPIE
4932, 346–357 (2003),
http://dx.doi.org/10.1117/12.472427
[18] I. Zergioti, K.D. Kyrkis, D.G. Papazoglou, and S.
Tzortzakis, Structural modifications in fused silica induced by
ultraviolet fs laser filaments, Appl. Surf. Sci.
253(19), 7865–7868 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.02.095
[19] M. Bernier, S. Gagnon, and R. Vallée, Role of the 1D
optical filamentation process in the writing of first order
fiber Bragg gratings with femtosecond pulses at 800 nm
[Invited], Opt. Mater. Express
1(5), 832–844 (2011),
http://dx.doi.org/10.1364/OME.1.000832