E. Gaižauskas
and G. Trinkunas
An overview of the influence of
coherent
coupling in light–matter interaction traced by transients in pump-probe
spectroscopy
is given, with special emphasis on interest and works provided by the
authors.
Advantages of this technique used to trace pathways of transfer and
decay
of quantum coherences in atoms, molecular aggregates, and biological
structures,
as well as feasibility of the probing of both the lifetime and
characteristic
lengths (area, volume) of coherent excitations are discussed.
Theoretical
analysis of the pump-probe measurements is based on the numerical
solution
of the equation for the reduced density matrix in the representation of
atomic,
molecular, and excitonic states, considering coherent coupling between
light
and appropriate quantum states precisely.
Autoriai, remdamiesi moksline
patirtimi
ir atliktais darbais, apžvelgia koherentinės medžiagos bei lauko
sąveikos
ypatumus bei apraiškas, stebimas ultrasparčiosios žadinimo-zondavimo
spektroskopijos
metodais. Aptariami šios technikos privalumai siekiant nustatyti
atomuose,
molekuliniuose agregatuose bei biologiniuose dariniuose sužadintų
koherentinių
būsenų gesimo ir pernašos kelius, taip pat galimybės įvertinti tokių
sužadinimų
gyvavimo trukmę bei koherentiškumo ilgį, plotą ar tūrį (kai kalbama
apie molekulinius
agregatus). Aprašant lazerinės žadinimo-zondavimo spektroskopijos
matavimus
remiamasi tankio matricos, užrašytos atomo, molekulės ar eksitoninių
funkcijų
bazėje, evoliucijos skaitmeniniu sprendimu (netaikant trikdžių teorijos
artinių
elektromagnetinio lauko ir kvantinių medžiagos būsenų sąveikai
aprašyti).
References
/ Nuorodos
[1] Sh. Mukamel,
Principles of
Nonlinear
Optical Spectroscopy (Oxford University Press, New York–Oxford,
1995),
http://ukcatalogue.oup.com/product/9780195132915.do#
[2] J. Mompart and R. Corbal
án, Lasing
without
inversion, J. Opt. B Quant. Semiclass. Opt.
2(3), R7 (2000),
http://dx.doi.org/10.1088/1464-4266/2/3/201
[3] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch,
M.D.
Lukin, Y. Rostovtsev, E.S. Fry, and M.O. Scully, Ultraslow group
velocity
and enhanced nonlinear optical effects in a coherently driven hot
atomic
gas, Phys. Rev. Lett.
82,
5229–5232 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.5229
[4] D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, and M.D.
Lukin,
Storage of light in atomic vapor, Phys. Rev. Lett.
86, 783–786 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.783
[5] D.S. Bradshaw and D.L. Andrews, Optically controlled resonance
energy
transfer: Mechanism and configuration for all-optical switching, J.
Chem.
Phys.
128(14), 144506 (2008),
http://dx.doi.org/10.1063/1.2894319
[6] E. Biolatti, R.C. Iotti, P. Zanardi, and F. Rossi, Quantum
information
processing with semiconductor macroatoms, Phys. Rev. Lett.
85(26), 5647–5650 (2000),
http://dx.doi.org/10.1103/PhysRevLett.85.5647
[7] P. Chen, C. Piermarocchi, and L.J. Sham, Control of exciton
dynamics
in nanodots for quantum operations, Phys. Rev. Lett.
87(6), 067401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.067401
[8] A. Nazir, B.W. Lovett, and G.A.D. Briggs, Creating excitonic
entanglement
in quantum dots through the optical Stark effect, Phys. Rev. A
70, 052301 (1986),
http://dx.doi.org/10.1103/PhysRevA.70.052301
[9] G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Mančal, Y.-C.
Cheng,
R.E. Blankenship, and G.R. Fleming, Evidence of wavelike energy
transfer
through quantum coherence in photosynthetic systems, Nature
446, 782–786 (2007),
http://dx.doi.org/10.1038/nature05678
[10] V. Butkus, D. Abramavicius, A. Gelzinis, and L. Valkunas,
Two-dimensional
optical spectroscopy of molecolar aggregates, Lith. J. Phys.
50(3), 267–303 (2010),
http://dx.doi.org/10.3952/lithjphys.50305
[11] D. Abramavicius, V. Butkus, and L. Valkunas, Interplay of exciton
coherence
and dissipation in molecular aggregates, in:
Quantum Efficiency in Complex Systems,
Part II: From Molecular Aggregates
to Organic Solar Cells, Vol. 85, eds. U. Wurfel, M. Thorwart,
and
E.R. Weber (Elsvier Academic Press, San Diego, 2011) pp. 3–46,
http://www.elsevier.com/books/
[12] A. Gelzinis, D. Abramavicius, and L. Valkunas, Non-Markovian
effcts
in time-resolved fluorescence spectrum of molecular aggregates: Tracing
polaron
formation, Phys. Rev. B
84(24),
245430 (2011),
http://dx.doi.org/10.1103/PhysRevB.84.245430
[13] V. Butkus, A. Gelzinis, and L. Valkunas, Quantum coherence and
disorder-specific
effects in simulations of 2D optical spectra of one-dimensional
J-aggregates,
J. Phys. Chem. A
115(16),
3876–3885
(2011),
http://dx.doi.org/10.1021/jp108291r
[14] V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius,
Vibrational
vs. electronic coherences in 2D spectrum of molecular systems, Chem.
Phys.
Lett.
545, 40–43 (2012),
http://dx.doi.org/10.1016/j.cplett.2012.07.014
[15] V. Butkus, L. Valkunas, and D. Abramavicius, Molecular
vibrations-induced
quantum beats in two-dimensional electronic spectroscopy, J. Chem.
Phys.
137(4), 044513 (2012),
http://dx.doi.org/10.1063/1.4737843
[16] T. Meier, V. Chernyak, and S. Mukamel, Femtosecond photon echoes
in
molecular aggregates, J. Chem. Phys.
107
(21), 8759–8774 (1997),
http://dx.doi.org/10.1063/1.475169
[17] D. Abramavicius and S. Mukamel, Chirality-induced signals in
coherent
multidimensional spectroscopy of excitons, J. Chem. Phys.
124(3), 034113 (2006),
http://dx.doi.org/10.1063/1.2104527
[18] K. Blum,
Density Matrix Theory
and
Applications (Plenum Press, New York, 1981),
http://www.springer.com/physics/
[19] Y.R. Shen,
The Principles of
Nonlinear
Optics (John Wiley & Sons, New York, 1984),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471430803.html
[20] E. Gaizauskas and L. Valkunas, Femtosecond four-wave mixing
spectroscopy
of molecular aggregates, J. Phys. Chem. B
101(37), 7321–7326 (1997),
http://dx.doi.org/10.1021/jp9639713
[21] E. Gaižauskas and K.-H. Feller, Effects of strong excitation
induced
disorder on pump–probe spectra of molecular aggregates, J. Lumin.
102–103, 13–20 (2003),
http://dx.doi.org/10.1016/S0022-2313(02)00544-6
[22] C.P. Slichter,
Principles of
Magnetic
Resonance (Springer Verlag, New York, 1990),
http://www.springer.com/materials/book/978-3-540-50157-2
[23] N. Raja, S. Reddy, P.A. Lyle, and G.J. Small, Applications of
spectral
hole burning spectroscopies to antenna and reaction center complexes,
Photosynth.
Res.
31, 167–194 (1992),
http://dx.doi.org/10.1007/BF00035536
[24] G. Small, Spectral hole burning: Methods and applications to
photosynthesis,
in:
Biophysical Techniques in
Photosynthesis , eds. J. Amesz and A.J. Hoff (Kluwer Academic
Publishers, 1996) pp. 123–136,
http://www.springer.com/life+sciences/plant+sciences/book/978-0-7923-3642-6
[25] W.T. Pollard and R.A. Friesner, Solution of the Redfield equation
for
the dissipative quantum dynamics of multilevel system, J. Chem. Phys.
100, 5054–5065 (1993),
http://dx.doi.org/10.1063/1.467222
[26] M. Chachisvilis and V. Sundström, Femtosecond vibrational dynamics
and
relaxation in the core light-harvesting complex of photosynthetic
purple
bacteria, Chem. Phys. Lett.
261,
165–174 (1996),
http://dx.doi.org/10.1016/0009-2614(96)00939-6
[27] E. Gaižauskas and L. Valkūnas, Coherent transients of pump-probe
spectroscopy in two-level approximation, Opt. Commun.
109(1–2), 75–80 (1994),
http://dx.doi.org/10.1016/0030-4018(94)90741-2
[28] E. Gaižauskas, A. Beržanskis, and K.-H. Feller, Effects of
non-Markovian
relaxation in the femtosecond differential absorption spectra, Chem.
Phys.
235(1–3), 123–130
(1998),
http://dx.doi.org/10.1016/S0301-0104(98)00106-2
[29] A. Savickas and E. Gaižauskas, Manifestation of the optical Stark
effect
in differential transmission spectra, Lith. J. Phys.
48(2), 155–162 (2008),
http://dx.doi.org/10.3952/lithjphys.48204
[30] J.-Y. Bigot, M.T. Portella, R.W. Schoenlein, C.J. Bardeen, A.
Migus,
and C.V. Shank, Non-Markovian dephasing of molecules in solution
measured
with three-pulse femtosecond photon echoes, Phys. Rev. Lett.
66, 1138–1141 (1991),
http://dx.doi.org/10.1103/PhysRevLett.66.1138
[31] E. Gaizauskas, K.-H. Feller, and L. Valkunas, Manifestation of the
transition
from the excited state by means of femtosecond four-wave mixing
spectroscopy,
Opt. Quant. Electron.
28,
1203–1213
(1996),
http://dx.doi.org/10.1007/BF00347651
[32] A. Guzman de Garcia, P. Meystre, and R.R.E. Salomaa, Time-delayed
probe
spectroscopy in two-photon–pumped systems, Phys. Rev. A
32, 1531–1540 (1985),
http://dx.doi.org/10.1103/PhysRevA.32.1531
[33] E. Gaižauskas and G. Gedvilas, Theory of coherent one- and
two-photon
interaction in a three-level system, Opt. Commun.
91(34), 312–320 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90455-Z
[34] C.S. Mullin, D. Kim, M.B. Feller, and Y.R. Shen, Picosecond
studies
of optical second harmonic generation in atomic vapor, Phys. Rev. Lett.
74, 2678–2681 (1995),
http://dx.doi.org/10.1103/PhysRevLett.74.2678
[35] O. Kittelmann, J. Ringling, A. Nazarkin, G. Korn, and I.V. Hertel,
Direct
observation of coherent medium response under the condition of
two-photon
excitation of krypton by femtosecond UV-laser pulses, Phys. Rev. Lett.
76, 2682–2685 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2682
[36] A. Nazarkin, G. Korn, O. Kittelmann, J. Ringling, and I.V. Hertel,
Femtosecond-pulse
two-photon resonant difference-frequency mixing in gases: A technique
for
tunable vacuum-ultraviolet femtosecond-pulse generation and a
spectroscopic
tool for studying atoms in strong laser fields, Phys. Rev. A
56, 671–684 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.671
[37] I. Pop and L. Moorman, Electromagnetically induced generation,
gain
in delayed wave mixing, and measuring coherent states using
quantum-interference
windows, Phys. Rev. A
60,
678–686
(1999),
http://dx.doi.org/10.1103/PhysRevA.60.678
[38] E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, and V. Vaičaitis,
Probing
electronic coherences by combined two- and one-photon excitation in
atomic
vapors, Opt. Lett.
38, 124–126
(2013),
http://dx.doi.org/10.1364/OL.38.000124
[39] M. Chachisvilis, H. Fidder, and V. Sundström, Electronic coherence
in
pseudo two-collour pump-probe spectroscopy, Chem. Phys. Lett.
234, 141 (1995),
http://dx.doi.org/10.1016/0009-2614(95)00041-2
[40] J.A. Leegwater, Theory of coherent oscillations in the
photosynthetic
reaction center, J. Phys. Chem.
99
(29), 11605–11611 (1995),
http://dx.doi.org/10.1021/j100029a044
[41]
J-Aggregates, ed. T.
Kobayashi
(World Scientific, Singapore, 1996),
http://dx.doi.org/10.1142/3168
[42] E. Hanamura, Rapid radiative decay and enhanced optical
nonlinearity
of excitons in a quantum well, Phys. Rev. B
38, 1228–1234 (1988),
http://dx.doi.org/10.1103/PhysRevB.38.1228
[43] E. Hanamura, Very large optical nonlinearity of semiconductor
microcrystallites,
Phys. Rev. B
37, 1273–1279
(1988),
http://dx.doi.org/10.1103/PhysRevB.37.1273
[44] H. van Amerongen, R. van Grondelle, and L. Valkunas,
Photosynthetic Excitons (World
Scientific, Singapore, 2000),
http://www.worldscientific.com/worldscibooks/10.1142/3609
[45] V. Sundström, T. Gillbro, R.A. Gadonas, and A. Piskarskas,
Annihilation
of singlet excitons in
J aggregates of pseudoisocyanine (PIC)
studied
by pico- and subpicosecond spectroscopy, J. Chem. Phys.
89, 2754–2762 (1988),
http://dx.doi.org/10.1063/1.455027
[46] H. Stiel, S. Daehne, and K. Teuchner, J-aggregates of
pseudoisocyanine
in solution: New data from nonlinear spectroscopy, J. Lumin.
39(6), 351–357 (1988),
http://dx.doi.org/10.1016/0022-2313(88)90016-6
[47] E. Gaižauskas, K.-H. Feller, and R. Gadonas, Anihillation enhanced
four-wave
mixing in molecular aggregates, Opt. Commun.
118(3–4), 360–366 (1995),
http://dx.doi.org/10.1016/0030-4018(95)00235-Z
[48] R. Gadonas, K.-H. Feller, A. Pugzlys, G. Jonusauskas, J. Oberl
é, and C. Rulli
è
re, Wavelength and intensity-dependent transient degenerate four-wave
mixing in pseudoisocyanine
J-aggregates, J. Chem. Phys.
106(20), 8374–8383 (1997),
http://dx.doi.org/10.1063/1.473899
[49] D.B. Chesnut and A. Suna, Fermion behavior of one-dimensional
excitons,
J. Chem. Phys.
39, 146 (1963),
http://dx.doi.org/10.1063/1.1733991
[50] G. Juzeliūnas, Exciton absorption spectra of optically excited
linear
molecular aggregates, Z. Phys. D
8
, 379–384 (1988),
http://dx.doi.org/10.1007/BF01437105
[51] G. Juzeliūnas and P. Reineker, Influence of exciton–exciton
interaction
on one-to-two exciton transitions in molecular aggregates with linear
and
circular geometries, J. Chem. Phys.
107
(23), 9801–9806 (1997),
http://dx.doi.org/10.1063/1.475278
[52] F.C. Spano, J.R. Kuklinski, and S. Mukamel, Temperature-dependent
superradiant
decay of excitons in small aggregates, Phys. Rev. Lett.
65, 211–214 (1990),
http://dx.doi.org/10.1103/PhysRevLett.65.211
[53] F.C. Spano, J.R. Kuklinsky, and S. Mukamel, Cooperative radiative
dynamics
in molecular aggregates, J. Chem. Phys.
94, 7534 (1991),
http://dx.doi.org/10.1063/1.460185
[54] E. Gaižauskas and K.-H. Feller, Nonlinear transients to pump–probe
spectra
of strongly excited
J-aggregates, Opt. Commun.
216(1–3), 217–224 (2003),
http://dx.doi.org/10.1016/S0030-4018(02)02295-2
[55] E.W. Knapp, Lineshapes of molecular aggregates, exchange narrowing
and
intersite correlation, Chem. Phys.
85
, 73–82 (1984),
http://dx.doi.org/10.1016/S0301-0104(84)85174-5
[56] H. Fidder, J. Knoester, and D.A. Wiersma, Optical properties of
disordered
molecular aggregates: A numerical study, J. Chem. Phys.
95(11), 7880 (1991),
http://dx.doi.org/10.1063/1.461317
[57] D.J. Thouless, Electrons in disordered systems and the theory of
localization,
Phys. Rep.
13(3), 93–142
(1974),
http://dx.doi.org/10.1016/0370-1573(74)90029-5
[58] G. Trinkunas, J.L. Herek, T. Polívka, V. Sundström, and T.
Pullerits,
Exciton delocalization probed by excitation annihilation in the
light-harvesting
antenna LH2, Phys. Rev. Lett.
86
(18), 4167–4170 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.4167
[59] G. Trinkunas, Probing of molecular aggregates with exciton
annihilation,
J. Lumin.
102, 532–535 (2003),
http://dx.doi.org/10.1016/S0022-2313(02)00594-X
[60] J.A. Leegwater, Coherent versus incoherent energy transfer and
trapping
in photosynthetic antenna complexes, J. Phys. Chem.
100(34), 14403–14409 (1996),
http://dx.doi.org/10.1021/jp961448i
[61] R. van Grondelle and V.I. Novoderezhkin, Quantum effects in
photosynthesis,
in:
22nd Solvay Conference on
Chemistry
– Quantum Effects in Chemistry and Biology, Vol. 3, eds. G.R.
Fleming,
G.D. Scholes, and A. DeWit (Elsevier Science BV, Amsterdam, the
Netherlands,
2011) pp. 198–210,
http://dx.doi.org/10.1016/j.proche.2011.08.027
[62] R.A. Jensen, R.F. Kelley, S.J. Lee, M.R. Wasielewski, J.T. Hupp,
and
D.M. Tiede, Fast energy transfer within a self-assembled cyclic
porphyrin
tetramer, Chem. Commun.
16,
1886–1888
(2008),
http://dx.doi.org/10.1039/B718628B
[63] M.-C. Yoon, S. Cho, P. Kim, T. Hori, N. Aratani, A. Osuka, and D.
Kim,
Structural dependence on excitation energy migration processes in
artificial
light harvesting cyclic zinc(II) porphyrin arrays, J. Phys. Chem. B
113(45), 15074–15082 (2009),
http://dx.doi.org/10.1021/jp904729y
[64] Ch. Maeda, P. Kim, S. Cho, J.K. Park, J.M. Lim, D. Kim, J.
Vura-Weis,
M.R. Wasielewski, H. Shinokubo, and A. Osuka, Large porphyrin squares
from
the self-assembly of
meso-triazole-appended
L-shaped
meso-meso-linked Zn
II-triporphyrins: Synthesis and efficient energy transfer, Chem.
Eur. J.
16(17), 5052–5061
(2010),
http://dx.doi.org/10.1002/chem.200903195
[65] J. Yang and D. Kim, Excitation energy migration processes in
various
multi-porphyrin assemblies, Phil. Trans. R. Soc. A
370(1972), 3802–3818 (2012),
http://dx.doi.org/10.1098/rsta.2011.0206