[PDF]    http://dx.doi.org/10.3952/lithjphys.53103

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 2540 (2013)


RESONATORS WITH INTRACAVITY PHOTONIC CRYSTALS
M. Peckusa,b, R. Rogalskisa, V. Sirutkaitisa , and K. Staliūnasc,d
aLaser Research Center, Vilnius University, Saulėtekio 10, LT-10222 Vilnius, Lithuania
E-mail: martynas.peckus@ff.vu.lt
bCenter for Physical Sciences and Technology, Savanorių 231, LT-02300, Vilnius, Lithuania
cDepartament de Fisica i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Colom 11, 08222 Terrassa, Barcelona, Spain
dInstitució Catalana de Reserca i Estudis Avançats (ICREA), Pg. Lluis Companys, 23, 08010 Barcelona, Spain

Received 4 December 2012; accepted 20 December 2012

We investigate theoretically and experimentally light dynamics in plane-mirror Fabry-Pérot resonators filled with two- and three-dimensional photonic crystals. It has been predicted that the diffraction of such resonators can be manipulated [20] and used to control the linear and nonlinear light pattern formation there. Here we study the phenomenon in detail. We show the hyperbolic shape angular transmission profiles in case of a two-dimensional photonic structure (obtained by the one-dimensional modulation of the surface of the mirrors) and study the sub- and superdiffractive regimes in such resonators. We also summarize and review the previous results [21] of a resonator filled by a three-dimensional photonic structure (obtained by the two-dimensional modulation of the mirrors).
Keywords: photonic crystals, resonators, diffraction
PACS: 42.55.Tv, 42.25.Fx, 42.79.-e


FOTONINIAIS KRISTALAIS UŽPILDYTI REZONATORIAI
M. Peckusa,b, R. Rogalskisa, V. Sirutkaitisa , K. Staliūnasc,d
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bFizinių ir technologijos mokslų centras, Vilnius, Lietuva
cKatalonų politechnikos universiteto Fizikos ir branduolinės inžinerijos katedra, Terasa, Ispanija
dKatalonų tyrimų ir aukštųjų studijų institutas (ICREA), Barselona, Ispanija

Darbe tiriami plokščiųjų veidrodžių Fabri ir Pero rezonatoriai su vidine lūžio rodiklio moduliacija, atitinkančia vieną išilginį fotoninio kristalo periodą. Tokie rezonatoriai realizuojami sukuriant periodinę lūžio rodiklio moduliaciją vieno arba abiejų veidrodžių paviršiuje (t. y. suformuojant vienmates arba dvimates fazines difrakcines gardeles). Fotoninių kristalų rezonatoriaus formuojamų pluoštų difrakcinės savybės gali būti apibūdinamos subdifrakciniu (kai kampinis pralaidumo spektras platesnis už homogeninio rezonatoriaus) ir superdifrakciniu (kai kampinis pralaidumo spektras siauresnis už homogeninio rezonatoriaus) režimais. Rezonatorius su vienmate veidrodžių moduliacija išsiskiria hiperbolinio pavidalo erdviniu spektru, o dvimatės veidrodžių moduliacijos atveju – kvadratinio pavidalo erdviniu spektru. Rezonatoriaus analizei sukurtas sklaidos matricų teorija paremtas modelis. Analizuojamas pagrindinių rezonatoriaus parametrų (veidrodžių pralaidumo, gardelių difrakcinio efektyvumo, rezonatoriaus ilgio) įtaka rezonatoriaus erdvinės dispersijos charakteristikoms. Skirtingai nuo ankstesnių darbų ([20, 21]), šiame darbe pagrindinis dėmesys skiriamas rezonatoriui su vienu moduliuotu veidrodžiu. Tokio rezonatoriaus eksperimentiškai išmatuoti erdviniai skirstiniai labai gerai atitinka teoriškai sumodeliuotus, o sistema yra patogi netiesiniams šviesos dariniams fotoninių kristalų rezonatoriuose tirti.


References / Nuorodos

[1] K. Staliūnas and V.J. Sánchez-Morcillo, Transverse Patterns in Nonlinear Optical Resonators (Springer, 2003),
http://www.springer.com/materials/book/978-3-540-00434-9
[2] G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (Wiley, New York, 1977),
http://www.amazon.co.uk/Self-organization-Nonequilibrium-Systems-Dissipative-Fluctuations/dp/0471024015
[3] M.C. Cross and P.C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65(3), 851–1112 (1993),
http://dx.doi.org/10.1103/RevModPhys.65.851
[4] K. Staliunas, S. Longhi, and G.J. de Valcárcel, Faraday patterns in Bose-Einstein condensates, Phys. Rev. Lett. 89 (21), 210406 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.210406
[5] H. Saito and M. Ueda, Dynamically stabilized bright solitons in a two-dimensional Bose-Einstein condensate, Phys. Rev. Lett. 90(4), 040403 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.040403
[6] F.K. Abdullaev, J.G. Caputo, R.A. Kraenkel, and B.A. Malomed, Controlling collapse in Bose-Einstein condensates by temporal modulation of the scattering length, Phys. Rev. A 67(1), 013605 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.013605
[7] F.Kh. Abdullaev, A.M. Kamchatnov, V.V. Konotop, and V.A. Brazhnyi, Adiabatic dynamics of periodic waves in Bose-Einstein condensates with time dependent atomic scattering length, Phys. Rev. Lett. 90(23), 230402 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.230402
[8] D.E. Pelinovsky, P.G. Kevrekidis, and D.J. Frantzeskakis, Averaging for solitons with nonlinearity management, Phys. Rev. Lett. 91(24), 240201 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.240201
[9] A.R. Davoyan, I.V. Shadrivov, and Y.S. Kivshar, Self-focusing and spatial plasmon-polariton solitons, Opt. Express 17(24), 21732–21737 (2009),
http://dx.doi.org/10.1364/OE.17.021732
[10] B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T.W. Ebbesen, Surface plasmon mode steering and negative refraction, Phys. Rev. Lett. 105(26), 266804 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.266804
[11] B. Stein, E. Devaux, C. Genet, and T.W. Ebbesen, Self-collimation of surface plasmon beams, Opt. Lett. 37 (11), 1916–1918 (2012),
http://dx.doi.org/10.1364/OL.37.001916
[12] K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori, Colloquium: Unusual resonators: Plasmonics, metamaterials, and random media, Rev. Mod. Phys. 80(4), 1201–1213 (2008),
http://dx.doi.org/10.1103/RevModPhys.80.1201
[13] R. Iliew, C. Etrich, T. Pertsch, F. Lederer, and K. Staliunas, Subdiffractive all-photonic crystal Fabry-Perot resonators, Opt. Lett. 33(22), 2695–2697 (2008),
http://dx.doi.org/10.1364/OL.33.002695
[14] K. Staliunas, O. Egorov, Y.S. Kivshar, and F. Lederer, Bloch cavity solitons in nonlinear resonators with intracavity photonic crystals, Phys. Rev. Lett. 101(15), 153903 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.153903
[15] C. Etrich, R. Iliew, K. Staliunas, F. Lederer, and O.A. Egorov, Ab initio dissipative solitons in an all-photonic crystal resonator, Phys. Rev. A 84(2), 021808 (2011),
http://dx.doi.org/10.1103/PhysRevA.84.021808
[16] R. Zengerle, Light propagation in singly and doubly periodic planar waveguides, J. Mod. Opt. 34(12), 1589–1617 (1987),
http://dx.doi.org/10.1080/09500348714551531
[17] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, Self-collimating phenomena in photonic crystals, Appl. Phys. Lett. 74(9), 1212–1214 (1999),
http://dx.doi.org/10.1063/1.123502
[18] K. Staliunas and V.J. Sánchez-Morcillo, Spatial filtering of light by chirped photonic crystals, Phys. Rev. A 79(5), 053807 (2009),
http://dx.doi.org/10.1103/PhysRevA.79.053807
[19] L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V. Sirutkaitis, and K. Staliunas, Signatures of light-beam spatial filtering in a three-dimensional photonic crystal, Phys. Rev. A 82 (4), 043819 (2010),
http://dx.doi.org/10.1103/PhysRevA.82.043819
[20] K. Staliunas, M. Peckus, and V. Sirutkaitis, Sub- and superdiffractive resonators with intracavity photonic crystals, Phys. Rev. A 76, 051803(R) (2007),
http://dx.doi.org/10.1103/PhysRevA.76.051803
[21] M. Peckus, R. Rogalskis, M. Andrulevicius, T. Tamulevicius, A. Guobiene, V. Jarutis, V. Sirutkaitis, and K. Staliunas, Resonators with manipulated diffraction due to two- and three-dimensional intracavity photonic crystals, Phys. Rev. A 79(3), 033806 (2009),
http://dx.doi.org/10.1103/PhysRevA.79.033806
[22] K. Staliunas and R. Herrero, Nondiffractive propagation of light in photonic crystals, Phys. Rev. E 73 , 016601 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.016601
[23] Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, Quantitative analysis of subdiffractive light propagation in photonic crystals, Opt. Commun. 269(1), 128–136 (2007),
http://dx.doi.org/10.1016/j.optcom.2006.07.036
[24] R. Iliew, C. Etrich, and F. Lederer, Self-collimation of light in three-dimensional photonic crystals, Opt. Express 13(18), 7076–7085 (2005),
http://dx.doi.org/10.1364/OPEX.13.007076
[25] Z. Lu, S. Shi, J.A. Murakowski, G.J. Schneider, C.A. Schuetz, and D.W. Prather, Experimental demonstration of self-collimation inside a three-dimensional photonic crystal, Phys. Rev. Lett. 96 (17), 173902 (2006),
http://dx.doi.org/10.1103/PhysRevLett.96.173902
[26] K. Staliunas, R. Herrero, and G.J. de Valcárcel, Arresting soliton collapse in two-dimensional nonlinear Schrödinger systems via spatiotemporal modulation of the external potential, Phys. Rev. A 75(1), 011604 (2007),
http://dx.doi.org/10.1103/PhysRevA.75.011604
[27] D. Gomila, R. Zambrini, and G.-L. Oppo, Photonic band-gap inhibition of modulational istabilities, Phys. Rev. Lett. 92(25), 253904 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.253904
[28] D. Gomila and G.-L. Oppo, Coupled-mode theory for photonic band-gap inhibition of spatial instabilities, Phys. Rev. E 72(1), 016614 (2005),
http://dx.doi.org/10.1103/PhysRevE.72.016614
[29] R. Graham and H. Haken, Laserlight – first example of a second-order phase transition far away from thermal equilibrium, Z. Phys. 237, 31–46 (1970),
http://dx.doi.org/10.1007/BF01400474
[30] S.A. Akhmanov, R.V. Khoklov, and A.P. Sukhorukov, in: Laser Handbook, eds. F.T. Arecchi and E.O. Schultz-DuBois, vol. 2 (North-Holland, Amsterdam, 1972),
http://www.amazon.co.uk/Laser-Handbook/dp/0720402522/
[31] L.A. Lugiato, C. Oldano, and L.M. Narducci, Cooperative frequency locking and stationary spatial structures in lasers, J. Opt. Soc. Am. B 5(5), 879–888 (1988),
http://dx.doi.org/10.1364/JOSAB.5.000879
[32] P. Coullet, L. Gil, and F. Rocca, Optical vortices, Opt. Commun. 73(5), 403–408 (1989),
http://dx.doi.org/10.1016/0030-4018(89)90180-6
[33] M. Brambilla, F. Battipede, L.A. Lugiato, V. Penna, F. Prati, C. Tamm, and C.O. Weiss, Transverse laser patterns. I. Phase singularity crystals, Phys. Rev. A 43(9), 5090–5113 (1991),
http://dx.doi.org/10.1103/PhysRevA.43.5090
[34] G.-L. Oppo, G. D’Alessandro, and W.J. Firth, Spatiotemporal instabilities of lasers in models reduced via center manifold techniques, Phys. Rev. A 44(7), 4712–4720 (1991),
http://dx.doi.org/10.1103/PhysRevA.44.4712
[35] K. Staliunas, Laser Ginzburg-Landau equation and laser hydrodynamics, Phys. Rev. A 48(2), 1573 (1993),
http://dx.doi.org/10.1103/PhysRevA.48.1573
[36] P.K. Jakobsen, J.V. Moloney, A.C. Newell, and R. Indik, Space-time dynamics of wide-gain-section lasers, Phys. Rev. A 45(11), 8129 (1992),
http://dx.doi.org/10.1103/PhysRevA.45.8129
[37] K. Staliunas, M.F.H. Tarroja, G. Slekys, C.O. Weiss, and L. Dambly, Analogy between photorefractive oscillators and class-A lasers, Phys. Rev. A 51(5), 4140 (1995),
http://dx.doi.org/10.1103/PhysRevA.51.4140
[38] S. Longhi and A. Geraci, Swift-Hohenberg equation for optical parametric oscillators, Phys. Rev. A 54(5), 4581 (1996),
http://dx.doi.org/10.1103/PhysRevA.54.4581
[39] G.J. de Valcárcel, K. Staliunas, E. Roldán, and V.J. Sánchez-Morcillo, Transverse patterns in degenerate optical parametric oscillation and degenerate four-wave mixing, Phys. Rev. A 54 (2), 1609 (1996),
http://dx.doi.org/10.1103/PhysRevA.54.1609
[40] P. Mandel, M. Georgiou, and T. Erneux, Transverse effects in coherently driven nonlinear cavities, Phys. Rev. A 47(5), 4277–4286 (1993),
http://dx.doi.org/10.1103/PhysRevA.47.4277
[41] M. Tlidi, M. Georgiou, and P. Mandel, Transverse patterns in nascent optical bistability, Phys. Rev. A 48(6), 4605–4609 (1993),
http://dx.doi.org/10.1103/PhysRevA.48.4605
[42] M. Haelterman and A.P. Sheppard, Polarization instability, multistability and transverse localized structures in Kerr media, Chaos Soliton Fract. 4(8–9), 1731–1743 (1994),
http://dx.doi.org/10.1016/0960-0779(94)90107-4
[43] G.A. Swartzlander, Jr. and C.T. Law, Optical vortex solitons observed in Kerr nonlinear media, Phys. Rev. Lett. 69(17), 2503–2506 (1992),
http://dx.doi.org/10.1103/PhysRevLett.69.2503
[44] W.J. Firth and C. Paré, Transverse modulational instabilities for counterpropagating beams in Kerr media, Opt. Lett. 13(12), 1096–1098 (1988),
http://dx.doi.org/10.1364/OL.13.001096
[45] S.A. Akhmanov, M.A. Vorontsov, V.Y. Ivanov, A.V. Larichev, and N.I. Zheleznykh, Controlling transverse-wave interactions in nonlinear optics: generation and interaction of spatiotemporal structures, J. Opt. Soc. Am. B 9(1), 78–90 (1992),
http://dx.doi.org/10.1364/JOSAB.9.000078
[46] N.I. Zheleznykh, M. Le Berre, E. Ressayre, and A. Tallet, Rotating spiral waves in a nonlinear optical system with spatial interactions, Chaos Soliton Fract. 4(8–9), 1717–1728 (1994),
http://dx.doi.org/10.1016/0960-0779(94)90106-6
[47] K. Staliunas, Dynamics of optical vortices in a laser beam, Opt. Commun. 90(1–3), 123–127 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90342-O
[48] D. Rozas, C.T. Law, and J.G.A. Swartzlander, Propagation dynamics of optical vortices, J. Opt. Soc. Am. B 14 (11), 3054–3065 (1997),
http://dx.doi.org/10.1364/JOSAB.14.003054
[49] Yu.S. Kivshar and E.A. Ostrovskaya, Optical vortices: Folding and twisting waves of light, Opt. Photon. News 12, 24–28 (2001),
http://www.osa-opn.org/home/articles/volume_12/issue_4/features/optical_vortices_folding_and_twisting_waves_of_lig/
[50] K. Staliunas, Vortices and dark solitons in the two-dimensional nonlinear Schrödinger equation, Chaos Soliton. Fract. 4(8–9), 1783–1796 (1994),
http://dx.doi.org/10.1016/0960-0779(94)90111-2
[51] F.T. Arecchi, G. Giacomelli, P.L. Ramazza, and S. Residori, Vortices and defect statistics in two-dimensional optical chaos, Phys. Rev. Lett. 67(27), 3749–3752 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.3749
[52] L. Gil, K. Emilsson, and G.L. Oppo, Dynamics of spiral waves in a spatially inhomogeneous Hopf bifurcation, Phys. Rev. A 45(2), R567–R570 (1992),
http://dx.doi.org/10.1103/PhysRevA.45.R567
[53] K. Staliunas and C.O. Weiss, Tilted and standing waves and vortex lattices in class-A lasers, Phys. Nonlinear Phenom. 81(1–2), 79–93 (1995),
http://dx.doi.org/10.1016/0167-2789(94)00193-T
[54] D. Hennequin, L. Dambly, D. Dangoisse, and P. Glorieux, Basic transverse dynamics of a photorefractive oscillator, J. Opt. Soc. Am. B 11(4), 676–684 (1994),
http://dx.doi.org/10.1364/JOSAB.11.000676
[55] K. Staliunas and C.O. Weiss, Nonstationary vortex lattices in large-aperture class B lasers, J. Opt. Soc. Am. B 12 (6), 1142–1149 (1995),
http://dx.doi.org/10.1364/JOSAB.12.001142
[56] S. Fauve and O. Thual, Solitary waves generated by subcritical instabilities in dissipative systems, Phys. Rev. Lett. 64(3), 282–284 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.282
[57] N.N. Rosanov, Transverse patterns in wide-aperture nonlinear optical systems, in: Progress in Optics , vol. 35, ed. E. Wolf (North-Holland, Amsterdam, 1996),
http://dx.doi.org/10.1016/S0079-6638(08)70527-4
[58] G. Slekys, K. Staliunas, and C.O. Weiss, Spatial localized structures in resonators with saturable absorber, Opt. Commun. 149, 113–116 (1998),
http://dx.doi.org/10.1016/S0030-4018(97)00667-6
[59] M. Tlidi, P. Mandel, and R. Lefever, Localized structures and localized patterns in optical bistability, Phys. Rev. Lett. 73(5), 640–643 (1994),
http://dx.doi.org/10.1103/PhysRevLett.73.640
[60] K. Staliunas and V.J. Sánchez-Morcillo, Localized structures in degenerate optical parametric oscillators, Opt. Commun. 139(4–6), 306–312 (1997),
http://dx.doi.org/10.1016/S0030-4018(97)00109-0
[61] S. Longhi, Spatial solitary waves and patterns in type II second-harmonic generation, Opt. Lett. 23(5), 346–348 (1998),
http://dx.doi.org/10.1364/OL.23.000346
[62] D. Michaelis, U. Peschel, and F. Lederer, Multistable localized structures and superlattices in semiconductor optical resonators, Phys. Rev. A 56(5), R3366–R3369 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.R3366
[63] L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato, Spatial solitons in semiconductor microcavities, Phys. Rev. A 58(3), 2542–2559 (1998),
http://dx.doi.org/10.1103/PhysRevA.58.2542
[64] V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, and C.O. Weiss, Patterns and localized structures in bistable semiconductor resonators, Phys. Rev. A 61(6), 063818 (2000),
http://dx.doi.org/10.1103/PhysRevA.61.063818
[65] K. Staliunas and V.J. Sánchez-Morcillo, Spatial-localized structures in degenerate optical parametric oscillators, Phys. Rev. A 57(2), 1454 (1998),
http://dx.doi.org/10.1103/PhysRevA.57.1454
[66] M. Tlidi, P. Mandel, M. Le Berre, E. Ressayre, A. Tallet, and L. Di Menza, Phase-separation dynamics of circular domain walls in the degenerate optical parametric oscillator, Opt. Lett. 25(7), 487–489 (2000),
http://dx.doi.org/10.1364/OL.25.000487
[67] G. Izús, M. San Miguel, and M. Santagiustina, Phase-locked spatial domains and Bloch domain walls in type-II optical parametric oscillators, Phys. Rev. E 64(5), 056231 (2001),
http://dx.doi.org/10.1103/PhysRevE.64.056231
[68] K. Staliunas, Three-dimensional Turing structures and spatial solitons in optical parametric oscillators, Phys. Rev. Lett. 81(1), 81–84 (1998), 
http://dx.doi.org/10.1103/PhysRevLett.81.81
[69] M. Tlidi, M. Haelterman, and P. Mandel, Three-dimensional structures in diffractive and dispersive nonlinear ring cavities, Quantum Semiclass. Opt. 10(6), 869 (1998),
http://dx.doi.org/10.1088/1355-5111/10/6/018
[70] G.J. de Valcárcel and K. Staliunas, Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance, Phys. Rev. E 67(2), 026604 (2003),
http://dx.doi.org/10.1103/PhysRevE.67.026604
[71] G.J. de Valcárcel and K. Staliunas, Pattern formation through phase bistability in oscillatory systems with space-modulated forcing, Phys. Rev. Lett. 105(5), 054101 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.054101
[72] K. Staliūnas, G. Šlekys, and C.O. Weiss, Nonlinear pattern formation in active optical systems: shocks, domains of tilted waves, and cross-roll patterns, Phys. Rev. Lett. 79(14), 2658 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.2658
[73] K. Staliunas, Midband dissipative spatial solitons, Phys. Rev. Lett. 91(5), 053901 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.053901
[74] K. Staliūnas, Midband solitons in nonlinear photonic crystal resonators, Phys. Rev. E 70(1), 016602 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.016602
[75] K. Staliūnas and M. Tlidi, Hyperbolic transverse patterns in nonlinear optical resonators, Phys. Rev. Lett. 94 (13), 133902 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.133902
[76] S. Kolpakov, A. Esteban-Martín, F. Silva, J. García, K. Staliunas, and G.J. de Valcárcel, Experimental demonstration of hyperbolic patterns, Phys. Rev. Lett. 101(25), 254101 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.254101