M. Peckus
, R. Rogalskis
, V. Sirutkaitis
, and K. Staliūnas
We investigate theoretically and
experimentally light dynamics in plane-mirror Fabry-Pérot resonators
filled with two- and three-dimensional photonic crystals. It has been
predicted that the diffraction of such resonators can be manipulated
[20] and used to control the linear and nonlinear light pattern
formation there. Here we study the phenomenon in detail. We show the
hyperbolic shape angular transmission profiles in case
of a two-dimensional photonic structure (obtained by the
one-dimensional modulation of the surface of the mirrors) and study the
sub- and superdiffractive regimes in such resonators. We also summarize
and review the previous results [21] of a resonator filled by a
three-dimensional photonic structure (obtained by the two-dimensional
modulation of the mirrors).
Darbe tiriami plokščiųjų veidrodžių
Fabri ir Pero rezonatoriai su vidine lūžio rodiklio moduliacija,
atitinkančia vieną išilginį fotoninio kristalo periodą. Tokie
rezonatoriai realizuojami sukuriant periodinę lūžio rodiklio
moduliaciją vieno arba abiejų veidrodžių paviršiuje (t. y. suformuojant
vienmates arba dvimates fazines difrakcines gardeles). Fotoninių
kristalų rezonatoriaus formuojamų pluoštų difrakcinės savybės gali būti
apibūdinamos subdifrakciniu (kai kampinis pralaidumo spektras platesnis
už homogeninio rezonatoriaus) ir superdifrakciniu (kai kampinis
pralaidumo spektras siauresnis už homogeninio rezonatoriaus) režimais.
Rezonatorius su
vienmate veidrodžių moduliacija išsiskiria hiperbolinio pavidalo
erdviniu spektru, o dvimatės veidrodžių moduliacijos atveju –
kvadratinio pavidalo erdviniu spektru. Rezonatoriaus analizei sukurtas
sklaidos matricų teorija paremtas modelis. Analizuojamas pagrindinių
rezonatoriaus parametrų (veidrodžių pralaidumo, gardelių difrakcinio
efektyvumo, rezonatoriaus ilgio) įtaka rezonatoriaus erdvinės
dispersijos charakteristikoms. Skirtingai nuo ankstesnių darbų ([20,
21]), šiame darbe pagrindinis dėmesys skiriamas rezonatoriui su vienu
moduliuotu veidrodžiu. Tokio rezonatoriaus eksperimentiškai išmatuoti
erdviniai skirstiniai labai gerai atitinka teoriškai sumodeliuotus, o
sistema yra patogi netiesiniams šviesos dariniams fotoninių kristalų
rezonatoriuose tirti.
References
/ Nuorodos
[1] K. Staliūnas and V.J. Sánchez-Morcillo,
Transverse Patterns in Nonlinear Optical
Resonators (Springer, 2003),
http://www.springer.com/materials/book/978-3-540-00434-9
[2] G. Nicolis and I. Prigogine,
Self-organization
in Nonequilibrium Systems: From Dissipative Structures to Order through
Fluctuations (Wiley, New York, 1977),
http://www.amazon.co.uk/Self-organization-Nonequilibrium-Systems-Dissipative-Fluctuations/dp/0471024015
[3] M.C. Cross and P.C. Hohenberg, Pattern formation outside of
equilibrium, Rev. Mod. Phys.
65(3),
851–1112 (1993),
http://dx.doi.org/10.1103/RevModPhys.65.851
[4] K. Staliunas, S. Longhi, and G.J. de Valcárcel, Faraday patterns in
Bose-Einstein condensates, Phys. Rev. Lett.
89 (21), 210406 (2002),
http://dx.doi.org/10.1103/PhysRevLett.89.210406
[5] H. Saito and M. Ueda, Dynamically stabilized bright solitons in a
two-dimensional Bose-Einstein condensate, Phys. Rev. Lett.
90(4), 040403 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.040403
[6] F.K. Abdullaev, J.G. Caputo, R.A. Kraenkel, and B.A. Malomed,
Controlling collapse in Bose-Einstein condensates by temporal
modulation of the scattering length, Phys. Rev. A
67(1), 013605 (2003),
http://dx.doi.org/10.1103/PhysRevA.67.013605
[7] F.Kh. Abdullaev, A.M. Kamchatnov, V.V. Konotop, and V.A. Brazhnyi,
Adiabatic dynamics of periodic waves in Bose-Einstein condensates with
time
dependent atomic scattering length, Phys. Rev. Lett.
90(23), 230402 (2003),
http://dx.doi.org/10.1103/PhysRevLett.90.230402
[8] D.E. Pelinovsky, P.G. Kevrekidis, and D.J. Frantzeskakis, Averaging
for solitons with nonlinearity management, Phys. Rev. Lett.
91(24), 240201 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.240201
[9] A.R. Davoyan, I.V. Shadrivov, and Y.S. Kivshar, Self-focusing and
spatial plasmon-polariton solitons, Opt. Express
17(24), 21732–21737 (2009),
http://dx.doi.org/10.1364/OE.17.021732
[10] B. Stein, J.-Y. Laluet, E. Devaux, C. Genet, and T.W. Ebbesen,
Surface plasmon mode steering and negative refraction, Phys. Rev. Lett.
105(26), 266804 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.266804
[11] B. Stein, E. Devaux, C. Genet, and T.W. Ebbesen, Self-collimation
of surface plasmon beams, Opt. Lett.
37
(11), 1916–1918 (2012),
http://dx.doi.org/10.1364/OL.37.001916
[12] K.Y. Bliokh, Y.P. Bliokh, V. Freilikher, S. Savel’ev, and F. Nori,
Colloquium: Unusual resonators: Plasmonics, metamaterials, and
random
media, Rev. Mod. Phys.
80(4),
1201–1213
(2008),
http://dx.doi.org/10.1103/RevModPhys.80.1201
[13] R. Iliew, C. Etrich, T. Pertsch, F. Lederer, and K. Staliunas,
Subdiffractive all-photonic crystal Fabry-Perot resonators, Opt. Lett.
33(22), 2695–2697 (2008),
http://dx.doi.org/10.1364/OL.33.002695
[14] K. Staliunas, O. Egorov, Y.S. Kivshar, and F. Lederer, Bloch
cavity solitons in nonlinear resonators with intracavity photonic
crystals, Phys. Rev. Lett.
101(15),
153903 (2008),
http://dx.doi.org/10.1103/PhysRevLett.101.153903
[15] C. Etrich, R. Iliew, K. Staliunas, F. Lederer, and O.A. Egorov,
Ab initio dissipative solitons in an all-photonic crystal
resonator,
Phys. Rev. A
84(2), 021808
(2011),
http://dx.doi.org/10.1103/PhysRevA.84.021808
[16] R. Zengerle, Light propagation in singly and doubly periodic
planar waveguides, J. Mod. Opt.
34(12),
1589–1617 (1987),
http://dx.doi.org/10.1080/09500348714551531
[17] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T.
Sato, and S. Kawakami, Self-collimating phenomena in photonic crystals,
Appl. Phys. Lett.
74(9),
1212–1214 (1999),
http://dx.doi.org/10.1063/1.123502
[18] K. Staliunas and V.J. Sánchez-Morcillo, Spatial filtering of light
by chirped photonic crystals, Phys. Rev. A
79(5), 053807 (2009),
http://dx.doi.org/10.1103/PhysRevA.79.053807
[19] L. Maigyte, T. Gertus, M. Peckus, J. Trull, C. Cojocaru, V.
Sirutkaitis, and K. Staliunas, Signatures of light-beam spatial
filtering in a three-dimensional photonic crystal, Phys. Rev. A
82 (4), 043819 (2010),
http://dx.doi.org/10.1103/PhysRevA.82.043819
[20] K. Staliunas, M. Peckus, and V. Sirutkaitis, Sub- and
superdiffractive resonators with intracavity photonic crystals, Phys.
Rev. A
76, 051803(R) (2007),
http://dx.doi.org/10.1103/PhysRevA.76.051803
[21] M. Peckus, R. Rogalskis, M. Andrulevicius, T. Tamulevicius, A.
Guobiene, V. Jarutis, V. Sirutkaitis, and K. Staliunas, Resonators with
manipulated diffraction due to two- and three-dimensional intracavity
photonic crystals, Phys. Rev. A
79(3),
033806 (2009),
http://dx.doi.org/10.1103/PhysRevA.79.033806
[22] K. Staliunas and R. Herrero, Nondiffractive propagation of light
in photonic crystals, Phys. Rev. E
73
, 016601 (2006),
http://dx.doi.org/10.1103/PhysRevE.73.016601
[23] Y. Loiko, C. Serrat, R. Herrero, and K. Staliunas, Quantitative
analysis of subdiffractive light propagation in photonic crystals, Opt.
Commun.
269(1), 128–136
(2007),
http://dx.doi.org/10.1016/j.optcom.2006.07.036
[24] R. Iliew, C. Etrich, and F. Lederer, Self-collimation of light in
three-dimensional photonic crystals, Opt. Express
13(18), 7076–7085 (2005),
http://dx.doi.org/10.1364/OPEX.13.007076
[25] Z. Lu, S. Shi, J.A. Murakowski, G.J. Schneider, C.A. Schuetz, and
D.W. Prather, Experimental demonstration of self-collimation inside a
three-dimensional photonic crystal, Phys. Rev. Lett.
96 (17), 173902 (2006),
http://dx.doi.org/10.1103/PhysRevLett.96.173902
[26] K. Staliunas, R. Herrero, and G.J. de Valcárcel, Arresting soliton
collapse in two-dimensional nonlinear Schrödinger systems via
spatiotemporal
modulation of the external potential, Phys. Rev. A
75(1), 011604 (2007),
http://dx.doi.org/10.1103/PhysRevA.75.011604
[27] D. Gomila, R. Zambrini, and G.-L. Oppo, Photonic band-gap
inhibition of modulational istabilities, Phys. Rev. Lett.
92(25), 253904 (2004),
http://dx.doi.org/10.1103/PhysRevLett.92.253904
[28] D. Gomila and G.-L. Oppo, Coupled-mode theory for photonic
band-gap inhibition of spatial instabilities, Phys. Rev. E
72(1), 016614 (2005),
http://dx.doi.org/10.1103/PhysRevE.72.016614
[29] R. Graham and H. Haken, Laserlight – first example of a
second-order phase transition far away from thermal equilibrium, Z.
Phys.
237, 31–46 (1970),
http://dx.doi.org/10.1007/BF01400474
[30] S.A. Akhmanov, R.V. Khoklov, and A.P. Sukhorukov, in:
Laser Handbook, eds. F.T. Arecchi
and E.O. Schultz-DuBois, vol. 2
(North-Holland, Amsterdam, 1972),
http://www.amazon.co.uk/Laser-Handbook/dp/0720402522/
[31] L.A. Lugiato, C. Oldano, and L.M. Narducci, Cooperative frequency
locking and stationary spatial structures in lasers, J. Opt. Soc. Am. B
5(5), 879–888 (1988),
http://dx.doi.org/10.1364/JOSAB.5.000879
[32] P. Coullet, L. Gil, and F. Rocca, Optical vortices, Opt. Commun.
73(5), 403–408 (1989),
http://dx.doi.org/10.1016/0030-4018(89)90180-6
[33] M. Brambilla, F. Battipede, L.A. Lugiato, V. Penna, F. Prati, C.
Tamm, and C.O. Weiss, Transverse laser patterns. I. Phase singularity
crystals, Phys. Rev. A
43(9),
5090–5113 (1991),
http://dx.doi.org/10.1103/PhysRevA.43.5090
[34] G.-L. Oppo, G. D’Alessandro, and W.J. Firth, Spatiotemporal
instabilities of lasers in models reduced via center manifold
techniques, Phys. Rev. A
44(7), 4712–4720 (1991),
http://dx.doi.org/10.1103/PhysRevA.44.4712
[35] K. Staliunas, Laser Ginzburg-Landau equation and laser
hydrodynamics, Phys. Rev. A
48(2),
1573 (1993),
http://dx.doi.org/10.1103/PhysRevA.48.1573
[36] P.K. Jakobsen, J.V. Moloney, A.C. Newell, and R. Indik, Space-time
dynamics of wide-gain-section lasers, Phys. Rev. A
45(11), 8129 (1992),
http://dx.doi.org/10.1103/PhysRevA.45.8129
[37] K. Staliunas, M.F.H. Tarroja, G. Slekys, C.O. Weiss, and L.
Dambly, Analogy between photorefractive oscillators and class-A lasers,
Phys. Rev. A
51(5), 4140
(1995),
http://dx.doi.org/10.1103/PhysRevA.51.4140
[38] S. Longhi and A. Geraci, Swift-Hohenberg equation for optical
parametric oscillators, Phys. Rev. A
54(5),
4581 (1996),
http://dx.doi.org/10.1103/PhysRevA.54.4581
[39] G.J. de Valcárcel, K. Staliunas, E. Roldán, and V.J.
Sánchez-Morcillo, Transverse patterns in degenerate optical parametric
oscillation and degenerate four-wave mixing, Phys. Rev. A
54 (2), 1609 (1996),
http://dx.doi.org/10.1103/PhysRevA.54.1609
[40] P. Mandel, M. Georgiou, and T. Erneux, Transverse effects in
coherently driven nonlinear cavities, Phys. Rev. A
47(5), 4277–4286 (1993),
http://dx.doi.org/10.1103/PhysRevA.47.4277
[41] M. Tlidi, M. Georgiou, and P. Mandel, Transverse patterns in
nascent optical bistability, Phys. Rev. A
48(6), 4605–4609 (1993),
http://dx.doi.org/10.1103/PhysRevA.48.4605
[42] M. Haelterman and A.P. Sheppard, Polarization instability,
multistability and transverse localized structures in Kerr media, Chaos
Soliton Fract.
4(8–9),
1731–1743 (1994),
http://dx.doi.org/10.1016/0960-0779(94)90107-4
[43] G.A. Swartzlander, Jr. and C.T. Law, Optical vortex solitons
observed in Kerr nonlinear media, Phys. Rev. Lett.
69(17), 2503–2506 (1992),
http://dx.doi.org/10.1103/PhysRevLett.69.2503
[44] W.J. Firth and C. Paré, Transverse modulational instabilities for
counterpropagating beams in Kerr media, Opt. Lett.
13(12), 1096–1098 (1988),
http://dx.doi.org/10.1364/OL.13.001096
[45] S.A. Akhmanov, M.A. Vorontsov, V.Y. Ivanov, A.V. Larichev, and
N.I. Zheleznykh, Controlling transverse-wave interactions in nonlinear
optics: generation and interaction of spatiotemporal structures, J.
Opt. Soc. Am. B
9(1), 78–90
(1992),
http://dx.doi.org/10.1364/JOSAB.9.000078
[46] N.I. Zheleznykh, M. Le Berre, E. Ressayre, and A. Tallet, Rotating
spiral waves in a nonlinear optical system with spatial interactions,
Chaos
Soliton Fract.
4(8–9),
1717–1728
(1994),
http://dx.doi.org/10.1016/0960-0779(94)90106-6
[47] K. Staliunas, Dynamics of optical vortices in a laser beam, Opt.
Commun.
90(1–3), 123–127
(1992),
http://dx.doi.org/10.1016/0030-4018(92)90342-O
[48] D. Rozas, C.T. Law, and J.G.A. Swartzlander, Propagation dynamics
of optical vortices, J. Opt. Soc. Am. B
14 (11), 3054–3065 (1997),
http://dx.doi.org/10.1364/JOSAB.14.003054
[49] Yu.S. Kivshar and E.A. Ostrovskaya, Optical vortices: Folding and
twisting waves of light, Opt. Photon. News
12, 24–28 (2001),
http://www.osa-opn.org/home/articles/volume_12/issue_4/features/optical_vortices_folding_and_twisting_waves_of_lig/
[50] K. Staliunas, Vortices and dark solitons in the two-dimensional
nonlinear Schrödinger equation, Chaos Soliton. Fract.
4(8–9), 1783–1796 (1994),
http://dx.doi.org/10.1016/0960-0779(94)90111-2
[51] F.T. Arecchi, G. Giacomelli, P.L. Ramazza, and S. Residori,
Vortices and defect statistics in two-dimensional optical chaos, Phys.
Rev. Lett.
67(27), 3749–3752 (1991),
http://dx.doi.org/10.1103/PhysRevLett.67.3749
[52] L. Gil, K. Emilsson, and G.L. Oppo, Dynamics of spiral waves in a
spatially inhomogeneous Hopf bifurcation, Phys. Rev. A
45(2), R567–R570 (1992),
http://dx.doi.org/10.1103/PhysRevA.45.R567
[53] K. Staliunas and C.O. Weiss, Tilted and standing waves and vortex
lattices in class-A lasers, Phys. Nonlinear Phenom.
81(1–2), 79–93 (1995),
http://dx.doi.org/10.1016/0167-2789(94)00193-T
[54] D. Hennequin, L. Dambly, D. Dangoisse, and P. Glorieux, Basic
transverse dynamics of a photorefractive oscillator, J. Opt. Soc. Am. B
11(4), 676–684 (1994),
http://dx.doi.org/10.1364/JOSAB.11.000676
[55] K. Staliunas and C.O. Weiss, Nonstationary vortex lattices in
large-aperture class B lasers, J. Opt. Soc. Am. B
12
(6), 1142–1149 (1995),
http://dx.doi.org/10.1364/JOSAB.12.001142
[56] S. Fauve and O. Thual, Solitary waves generated by subcritical
instabilities in dissipative systems, Phys. Rev. Lett.
64(3), 282–284 (1990),
http://dx.doi.org/10.1103/PhysRevLett.64.282
[57] N.N. Rosanov, Transverse patterns in wide-aperture nonlinear
optical
systems, in:
Progress in Optics
, vol. 35, ed. E. Wolf (North-Holland, Amsterdam, 1996),
http://dx.doi.org/10.1016/S0079-6638(08)70527-4
[58] G. Slekys, K. Staliunas, and C.O. Weiss, Spatial localized
structures in resonators with saturable absorber, Opt. Commun.
149, 113–116 (1998),
http://dx.doi.org/10.1016/S0030-4018(97)00667-6
[59] M. Tlidi, P. Mandel, and R. Lefever, Localized structures and
localized patterns in optical bistability, Phys. Rev. Lett.
73(5), 640–643 (1994),
http://dx.doi.org/10.1103/PhysRevLett.73.640
[60] K. Staliunas and V.J. Sánchez-Morcillo, Localized structures in
degenerate optical parametric oscillators, Opt. Commun.
139(4–6), 306–312 (1997),
http://dx.doi.org/10.1016/S0030-4018(97)00109-0
[61] S. Longhi, Spatial solitary waves and patterns in type II
second-harmonic generation, Opt. Lett.
23(5),
346–348 (1998),
http://dx.doi.org/10.1364/OL.23.000346
[62] D. Michaelis, U. Peschel, and F. Lederer, Multistable localized
structures and superlattices in semiconductor optical resonators, Phys.
Rev. A
56(5), R3366–R3369
(1997),
http://dx.doi.org/10.1103/PhysRevA.56.R3366
[63] L. Spinelli, G. Tissoni, M. Brambilla, F. Prati, and L.A. Lugiato,
Spatial solitons in semiconductor microcavities, Phys. Rev. A
58(3), 2542–2559 (1998),
http://dx.doi.org/10.1103/PhysRevA.58.2542
[64] V.B. Taranenko, I. Ganne, R.J. Kuszelewicz, and C.O. Weiss,
Patterns and localized structures in bistable semiconductor resonators,
Phys. Rev. A
61(6), 063818
(2000),
http://dx.doi.org/10.1103/PhysRevA.61.063818
[65] K. Staliunas and V.J. Sánchez-Morcillo, Spatial-localized
structures in degenerate optical parametric oscillators, Phys. Rev. A
57(2), 1454 (1998),
http://dx.doi.org/10.1103/PhysRevA.57.1454
[66] M. Tlidi, P. Mandel, M. Le Berre, E. Ressayre, A. Tallet, and L.
Di Menza, Phase-separation dynamics of circular domain walls in the
degenerate optical parametric oscillator, Opt. Lett.
25(7), 487–489 (2000),
http://dx.doi.org/10.1364/OL.25.000487
[67] G. Izús, M. San Miguel, and M. Santagiustina, Phase-locked spatial
domains and Bloch domain walls in type-II optical parametric
oscillators,
Phys. Rev. E
64(5), 056231
(2001),
http://dx.doi.org/10.1103/PhysRevE.64.056231
[68] K. Staliunas, Three-dimensional Turing structures and spatial
solitons in optical parametric oscillators, Phys. Rev. Lett.
81(1), 81–84 (1998),
http://dx.doi.org/10.1103/PhysRevLett.81.81
[69] M. Tlidi, M. Haelterman, and P. Mandel, Three-dimensional
structures in diffractive and dispersive nonlinear ring cavities,
Quantum Semiclass. Opt.
10(6),
869 (1998),
http://dx.doi.org/10.1088/1355-5111/10/6/018
[70] G.J. de Valcárcel and K. Staliunas, Excitation of phase patterns
and spatial solitons via two-frequency forcing of a 1:1 resonance,
Phys. Rev. E
67(2), 026604
(2003),
http://dx.doi.org/10.1103/PhysRevE.67.026604
[71] G.J. de Valcárcel and K. Staliunas, Pattern formation through
phase bistability in oscillatory systems with space-modulated forcing,
Phys. Rev. Lett.
105(5),
054101 (2010),
http://dx.doi.org/10.1103/PhysRevLett.105.054101
[72] K. Staliūnas, G. Šlekys, and C.O. Weiss, Nonlinear pattern
formation in active optical systems: shocks, domains of tilted waves,
and cross-roll patterns, Phys. Rev. Lett.
79(14), 2658 (1997),
http://dx.doi.org/10.1103/PhysRevLett.79.2658
[73] K. Staliunas, Midband dissipative spatial solitons, Phys. Rev.
Lett.
91(5), 053901 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.053901
[74] K. Staliūnas, Midband solitons in nonlinear photonic crystal
resonators, Phys. Rev. E
70(1),
016602 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.016602
[75] K. Staliūnas and M. Tlidi, Hyperbolic transverse patterns in
nonlinear optical resonators, Phys. Rev. Lett.
94 (13), 133902 (2005),
http://dx.doi.org/10.1103/PhysRevLett.94.133902
[76] S. Kolpakov, A. Esteban-Martín, F. Silva, J. García, K. Staliunas,
and G.J. de Valcárcel, Experimental demonstration of hyperbolic
patterns,
Phys. Rev. Lett.
101(25),
254101
(2008),
http://dx.doi.org/10.1103/PhysRevLett.101.254101