R. Rotomskis
, J. Valanciunaite
, A. Skripka
, S. Steponkiene
, G. Spogis
, S. Bagdonas
, and G. Streckyte
Recently, it has been suggested that
quantum
dots (QDs) could be used in the photodynamic therapy of cancer as
resonance
energy donors for conventional porphyrin type photosensitizers. Here we
present
the results of the spectroscopic studies on the formation of a
non-covalent
complex between QDs and photosensitizer chlorin Ce6 in an
aqueous
medium and in the presence of bovine serum albumin (BSA). Changes in
the
absorption and fluorescence spectra of QDs and Ce6 revealed
the
formation of a QD-Ce6 complex which occurs due to
hydrophobic interaction
between the nonpolar moiety of an amphiphilic photosensitizer and the
hydrophobic
part of the lipid-based coating of the QD. The photosensitizer
conjugated
with the QD could be indirectly excited by the Forster resonance energy
transfer
(FRET) from the QD to Ce6. The investigation on the capacity
of
such complex to generate 1O2 showed that the
QD-Ce6 complex irradiated by visible light is able to
produce 1O2 more efficiently than QDs or Ce6
taken
separately.
The photoinactivation of cells incubated with the QD-Ce6
complex and irradiated in the spectral region where the photosensitizer
does not
absorb provided evidence that such complex could induce FRET-mediated
cell
destruction.
Pastaraisiais metais buvo pasiūlyta,
kad
kvantiniai taškai (KT) galėtų tapti energijos donorais tradiciniams
porfirinams,
taikomiems vėžio gydymui fotodinaminės terapijos metodu. Šiame darbe
spektroskopiniais
metodais tirtas nekovalentinės prigimties komplekso tarp KT ir
fotosensibilizatoriaus
chlorino e6 (Ce6) susidarymas vandeninėje terpėje
ir
jaučio serumo albumino aplinkoje. KT ir Ce6 sugerties ir
fluorescencijos
spektrų pokyčiai atskleidė, kad KT ir Ce6 komplekso
formavimasis
vyksta dėl hidrofobinės sąveikos tarp amfifilinio
fotosensibilizatoriaus
molekulės nepolinės dalies ir hidrofobinės KT lipidinio dangalo dalies.
Tokiuose kompleksuose fotosensibilizatorius gali būti sužadinamas
netiesiogiai vykstant
Fiorsterio rezonansinės energijos pernašai. Švitinamas regimosios
šviesos
spinduliuote, KT ir Ce6 kompleksas generuoja singuletinį
deguonį
aktyviau negu jo atskirai švitinami komponentai. Inkubavus vėžio
ląsteles
KT ir Ce6 komplekso tirpalu ir pašvitinus šviesa, kurios
sensibilizatorius
nesugeria, didelė dalis ląstelių žuvo. Stabilių KT ir
fotosensibilizatorių kompleksų citotoksiškumas ląstelėse galėtų būti
panaudotas kuriant selektyvias
fotodinaminės terapijos metodikas.
References
/ Nuorodos
[1] K.R. Weishaupt, C.J. Gomer, and T.J. Dougherty, Identification of
singlet
oxygen as the cytotoxic agent in photo-inactivation of a murine tumor,
Cancer
Res.
36, 2326–2329 (1976),
PDF
[2] J.M. Fernandez, M.D. Bilgin, and L.I. Grossweiner, Singlet oxygen
generation
by photodynamic agents, J. Photochem. Photobiol. B Biol.
37(1–2), 131–140 (1997),
http://dx.doi.org/http://dx.doi.org/10.1016/S1011-1344(96)07349-6
[3] B. Čunderlíková, L. Gangeskar, and J. Moan, Acid-base properties of
chlorin
e
6: relation to cellular uptake, J. Photochem. Photobiol. B
Biol.
53(1–3), 81–90 (1999),
http://dx.doi.org/http://dx.doi.org/10.1016/S1011-1344(99)00130-X
[4] D. Kessel and R.D. Poretz, Sites of photodamage induced by
photodynamic
therapy with a chlorin e6 triacetoxymethyl ester (CAME), Photochem.
Photobiol.
71, 94–96 (2000),
http://dx.doi.org/10.1562/0031-8655(2000)0710094SOPIBP2.0.CO2
[5] A.C.S. Samia, X.B. Chen, and C. Burda, Semiconductor quantum dots
for
photodynamic therapy, J. Am. Chem. Soc.
125(51), 15736–15737 (2003),
http://dx.eoi.org/10.1021/ja0386905
[6] R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, and Y. Baba, Quantum
dots
as photosensitizers? Nat. Biotechnol.
22
(11), 1360–1361 (2004),
http://dx.eoi.org/10.1038/nbt1104-1360
[7] P. Juzenas, W. Chen, Y.P. Sun, M.A. Coelho, R. Generalov, N.
Generalova,
and I.L. Christensen, Quantum dots and nanoparticles for photodynamic
and
radiation therapies of cancer, Adv. Drug Deliv. Rev.
60(15), 1600–1614 (2008),
http://dx.doi.org/10.1016/j.addr.2008.08.004
[8] E. Yaghini, A.M. Seifalian, and A.J. MacRobert, Quantum dots and
their
potential biomedical applications in photosensitization for
photodynamic
therapy, Nanomedicine
4(3),
353–363
(2009),
http://dx.eoi.org/10.2217/nnm.09.9
[9] L. Shi, B. Hernandez, and M. Selke, Singlet oxygen generation from
water-soluble
quantum dot–organic dye nanocomposites, J. Am. Chem. Soc.
128, 6278–6279 (2006),
http://dx.doi.org/10.1021/ja057959c
[10] A. Jasaitis Jr., G. Streckyte, and R. Rotomskis, Photophysics of
sensitizer-protein
complexes, Lith. J. Phys.
36,
299–302
(1996)
[11] A. Jasaitis Jr., G. Streckyte, and R. Rotomskis, Binding of
porphyrin-type
sensitizers to human serum albumin: spectroscopic investigation,
Biologija
2, 16–23 (1997)
[12] R. Bachor, C.R. Shea, R. Gillies, and T. Hasan, Photosensitized
destruction
of human bladder carcinoma cells treated with chlorin e6-conjugated
microspheres,
Proc. Natl. Acad. Sci. USA
88(4),
1580–1584 (1991),
http://dx.doi.org/10.1073/pnas.88.4.1580
[13] M. Vermathen, M. Marzorati, P. Vermathen, and P. Bigler,
pH-dependent
distribution of chlorin e6 derivatives across phospholipid bilayers
probed
by NMR spectroscopy, Langmuir
26
(13), 11085–11094 (2010),
http://dx.doi.org/10.1021/la100679y
[14] J. Valančiūnaitė, A. Skripka, R. Araminaitė, K. Kalantojus, G.
Streckytė,
and R. Rotomskis, Spectroscopic study of non-covalent complex formation
between
different porphyrin analogues and quantum dots with lipid-based
coating,
Chemija
22(4), 181–187 (2011),
PDF
[15] J. Valanciunaite, A. Skripka, G. Streckyte, and R. Rotomskis,
Complex
of water-soluble CdSe/ZnS quantum dots and chlorine e
6:
interaction
and FRET, Proc. SPIE 7376,
Laser
Applications
in Life Sciences, 737607-1 (2010),
http://dx.doi.org/10.1117/12.871524
[16] A.A. Frolov, E.I. Zenkevich, G.P. Gurinovich, and G.A. Kochubeyev,
Chlorin
e6-liposome
interaction.
Investigation by the methods of fluorescence spectroscopy and inductive
resonance
energy transfer, J. Photochem. Photobiol. B Biol.
7(1), 43–56 (1990),
http://dx.doi.org/10.1016/1011-1344(90)85142-J
[17] H. Mojzisova, S. Bonneau, C. Vever-Bizet, and D. Brault, The
pH-dependent
distribution of the photosensitizer chlorin e6 among plasma proteins
and
membranes: A physico-chemical approach, Bioch. Biophys. Acta Biomembr.
1768, 366–374 (2007),
http://dx.doi.org/10.1016/j.bbamem.2006.10.009
[18] Y. Zhang and H. Görner, Photoprocesses of chlorin e6 bound to
lysozyme
or bovin serum albumin, Dyes Pigments
83,
174–179 (2009),
http://dx.doi.org/10.1016/j.dyepig.2009.04.013
[19] Y. Zhang, L. Mi, P.-N. Wang, S.-J. Lu, J.-Y. Chen, J. Guo, W.-L.
Yang, and C.-C. Wang, Photoluminescence decay dynamics of thiol-capped
CdTe quantum
dots in living cells under microexcitation, Small
4(6), 777–780 (2008),
http://dx.doi.org/10.1002/smll.200701034