[PDF]    http://dx.doi.org/10.3952/lithjphys.53105

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 5768 (2013)


COMPLEXES OF FUNCTIONALIZED QUANTUM DOTS AND CHLORIN e6 IN PHOTODYNAMIC THERAPY
R. Rotomskisa,b, J. Valanciunaiteb, A. Skripka b, S. Steponkieneb, G. Spogisb, S. Bagdonas a, and G. Streckytea
aBiophotonics Laboratory, Laser Research Center, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: giedre.streckyte@ff.vu.lt
bBiomedical Physics Laboratory, Institute of Oncology of Vilnius University, Baublio 3b, LT-08406 Vilnius, Lithuania

Received 11 December 2012; accepted 20 December 2012

Recently, it has been suggested that quantum dots (QDs) could be used in the photodynamic therapy of cancer as resonance energy donors for conventional porphyrin type photosensitizers. Here we present the results of the spectroscopic studies on the formation of a non-covalent complex between QDs and photosensitizer chlorin Ce6 in an aqueous medium and in the presence of bovine serum albumin (BSA). Changes in the absorption and fluorescence spectra of QDs and Ce6 revealed the formation of a QD-Ce6 complex which occurs due to hydrophobic interaction between the nonpolar moiety of an amphiphilic photosensitizer and the hydrophobic part of the lipid-based coating of the QD. The photosensitizer conjugated with the QD could be indirectly excited by the Forster resonance energy transfer (FRET) from the QD to Ce6. The investigation on the capacity of such complex to generate 1O2 showed that the QD-Ce6 complex irradiated by visible light is able to produce 1O2 more efficiently than QDs or Ce6 taken separately. The photoinactivation of cells incubated with the QD-Ce6 complex and irradiated in the spectral region where the photosensitizer does not absorb provided evidence that such complex could induce FRET-mediated cell destruction.
Keywords: quantum dots, lipids, photosensitizer, energy transfer, photodynamic therapy
PACS: 87.64.kv, 87.85Rs


MODIFIKUOTO PAVIRŠIAUS KVANTINIŲ TAŠKŲ IR CHLORINO e6
KOMPLEKSAI FOTODINAMINEI TERAPIJAI

R. Rotomskisa,b, J. Valančiūnaitėb, A. Skripka b, S. Steponkienėb, G. Špogisb, S. Bagdonas a, G. Streckytėa
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bVilniaus universiteto Onkologijos institutas, Vilnius, Lietuva

Pastaraisiais metais buvo pasiūlyta, kad kvantiniai taškai (KT) galėtų tapti energijos donorais tradiciniams porfirinams, taikomiems vėžio gydymui fotodinaminės terapijos metodu. Šiame darbe spektroskopiniais metodais tirtas nekovalentinės prigimties komplekso tarp KT ir fotosensibilizatoriaus chlorino e6 (Ce6) susidarymas vandeninėje terpėje ir jaučio serumo albumino aplinkoje. KT ir Ce6 sugerties ir fluorescencijos spektrų pokyčiai atskleidė, kad KT ir Ce6 komplekso formavimasis vyksta dėl hidrofobinės sąveikos tarp amfifilinio fotosensibilizatoriaus molekulės nepolinės dalies ir hidrofobinės KT lipidinio dangalo dalies. Tokiuose kompleksuose fotosensibilizatorius gali būti sužadinamas netiesiogiai vykstant Fiorsterio rezonansinės energijos pernašai. Švitinamas regimosios šviesos spinduliuote, KT ir Ce6 kompleksas generuoja singuletinį deguonį aktyviau negu jo atskirai švitinami komponentai. Inkubavus vėžio ląsteles KT ir Ce6 komplekso tirpalu ir pašvitinus šviesa, kurios sensibilizatorius nesugeria, didelė dalis ląstelių žuvo. Stabilių KT ir fotosensibilizatorių kompleksų citotoksiškumas ląstelėse galėtų būti panaudotas kuriant selektyvias fotodinaminės terapijos metodikas.


References / Nuorodos

[1] K.R. Weishaupt, C.J. Gomer, and T.J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photo-inactivation of a murine tumor, Cancer Res. 36, 2326–2329 (1976), PDF
[2] J.M. Fernandez, M.D. Bilgin, and L.I. Grossweiner, Singlet oxygen generation by photodynamic agents, J. Photochem. Photobiol. B Biol. 37(1–2), 131–140 (1997),
http://dx.doi.org/http://dx.doi.org/10.1016/S1011-1344(96)07349-6
[3] B. Čunderlíková, L. Gangeskar, and J. Moan, Acid-base properties of chlorin e6: relation to cellular uptake, J. Photochem. Photobiol. B Biol. 53(1–3), 81–90 (1999),
http://dx.doi.org/http://dx.doi.org/10.1016/S1011-1344(99)00130-X
[4] D. Kessel and R.D. Poretz, Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME), Photochem. Photobiol. 71, 94–96 (2000),
http://dx.doi.org/10.1562/0031-8655(2000)0710094SOPIBP2.0.CO2
[5] A.C.S. Samia, X.B. Chen, and C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc. 125(51), 15736–15737 (2003),
http://dx.eoi.org/10.1021/ja0386905
[6] R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, and Y. Baba, Quantum dots as photosensitizers? Nat. Biotechnol. 22 (11), 1360–1361 (2004),
http://dx.eoi.org/10.1038/nbt1104-1360
[7] P. Juzenas, W. Chen, Y.P. Sun, M.A. Coelho, R. Generalov, N. Generalova, and I.L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv. Drug Deliv. Rev. 60(15), 1600–1614 (2008),
http://dx.doi.org/10.1016/j.addr.2008.08.004
[8] E. Yaghini, A.M. Seifalian, and A.J. MacRobert, Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy, Nanomedicine 4(3), 353–363 (2009),
http://dx.eoi.org/10.2217/nnm.09.9
[9] L. Shi, B. Hernandez, and M. Selke, Singlet oxygen generation from water-soluble quantum dot–organic dye nanocomposites, J. Am. Chem. Soc. 128, 6278–6279 (2006),
http://dx.doi.org/10.1021/ja057959c
[10] A. Jasaitis Jr., G. Streckyte, and R. Rotomskis, Photophysics of sensitizer-protein complexes, Lith. J. Phys. 36, 299–302 (1996)
[11] A. Jasaitis Jr., G. Streckyte, and R. Rotomskis, Binding of porphyrin-type sensitizers to human serum albumin: spectroscopic investigation, Biologija 2, 16–23 (1997)
[12] R. Bachor, C.R. Shea, R. Gillies, and T. Hasan, Photosensitized destruction of human bladder carcinoma cells treated with chlorin e6-conjugated microspheres, Proc. Natl. Acad. Sci. USA 88(4), 1580–1584 (1991),
http://dx.doi.org/10.1073/pnas.88.4.1580
[13] M. Vermathen, M. Marzorati, P. Vermathen, and P. Bigler, pH-dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy, Langmuir 26 (13), 11085–11094 (2010),
http://dx.doi.org/10.1021/la100679y
[14] J. Valančiūnaitė, A. Skripka, R. Araminaitė, K. Kalantojus, G. Streckytė, and R. Rotomskis, Spectroscopic study of non-covalent complex formation between different porphyrin analogues and quantum dots with lipid-based coating, Chemija 22(4), 181–187 (2011), PDF
[15] J. Valanciunaite, A. Skripka, G. Streckyte, and R. Rotomskis, Complex of water-soluble CdSe/ZnS quantum dots and chlorine e6: interaction and FRET, Proc. SPIE 7376, Laser Applications in Life Sciences, 737607-1 (2010),
http://dx.doi.org/10.1117/12.871524
[16] A.A. Frolov, E.I. Zenkevich, G.P. Gurinovich, and G.A. Kochubeyev, Chlorin e6-liposome interaction. Investigation by the methods of fluorescence spectroscopy and inductive resonance energy transfer, J. Photochem. Photobiol. B Biol. 7(1), 43–56 (1990),
http://dx.doi.org/10.1016/1011-1344(90)85142-J
[17] H. Mojzisova, S. Bonneau, C. Vever-Bizet, and D. Brault, The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: A physico-chemical approach, Bioch. Biophys. Acta Biomembr. 1768, 366–374 (2007),
http://dx.doi.org/10.1016/j.bbamem.2006.10.009
[18] Y. Zhang and H. Görner, Photoprocesses of chlorin e6 bound to lysozyme or bovin serum albumin, Dyes Pigments 83, 174–179 (2009),
http://dx.doi.org/10.1016/j.dyepig.2009.04.013
[19] Y. Zhang, L. Mi, P.-N. Wang, S.-J. Lu, J.-Y. Chen, J. Guo, W.-L. Yang, and C.-C. Wang, Photoluminescence decay dynamics of thiol-capped CdTe quantum dots in living cells under microexcitation, Small 4(6), 777–780 (2008),
http://dx.doi.org/10.1002/smll.200701034