R. Campoamor-Stursberg
Received 26 September 2012; revised 16 November 2012; accepted 20 June
2013
An explicit formula describing the
branching of representations of sp(6) according to the reduction chain sp(6) ↓ sp(4) × sp(2) is given. This allows to
classify the multiplicity free reductions and, moreover, obtain the
multiplicity for each sp(4) × sp(2) representation. We compare the
method with the approach based on the theory of S-functions, pointing
out the strengths and weaknesses of the explicit formula. The branching
rule is used to construct an orthogonal basis of eigenstates for sp(6), where degenerations are
solved using a scalar instead of the standard missing label operator.
References
/ Nuorodos
[1] Yu.B. Rumer and A.I. Fet,
Teoriya
unitarnoy simmetrii (Nauka,
Moskva, 1970) [in Russian]
[2] H. Georgi,
Lie Algebras in
Particle Physics (Perseus Books, Reading
MA, 1999)
[3] M. Chaichian and R. Hagedorn,
Symmetry
in Quantum Mechanics: from
Angular Momentum to Supersymmetry (Institute of Physics Pub.,
Philadelphia, 1998)
[4] K. Grudzinski and B.G. Wybourne, J. Phys. A
29, 6631 (1996),
http://dx.doi.org/10.1088/0305-4470/29/20/017
[5] D.P. Zhelobenko,
Kompaktnye
gruppy Li i ikh predstavleniya (Nauka,
Moskva, 1973) [in Russian]
[6] R.T. Sharp, Proc. Camb. Phil. Soc.
68,
571 (1970),
http://dx.doi.org/10.1017/S030500410004634X
[7] A.J. Coleman, J. Math. Phys.
27,
1933 (1986),
http://dx.doi.org/10.1063/1.527012
[8] L.J. Boya and R. Campoamor-Stursberg, J. Phys. A
42, 235203 (2009),
http://dx.doi.org/10.1088/1751-8113/42/23/235203
[9] W.G. McKay, J. Patera, and D.R Rand,
Tables of Representations of
Simple Lie Algebras (CRM, Montréal, 1990)
[10] B.G. Wybourne, Euromath Bulletin
2,
145 (1996)
[11] E.S. Bernardes, Comput. Phys. Commun.
130, 137 (2000),
http://dx.doi.org/10.1016/S0010-4655(00)00006-0
[12] R. Feger and T.W. Kephart, arXiv:1206.6379v1 (2012),
http://lanl.arxiv.org/abs/1206.6379v1
[13] A. Klein and E.R. Marshalek, Rev. Mod. Phys.
63, 375 (1991),
http://dx.doi.org/10.1103/RevModPhys.63.375
[14] H. Fu and C. Sun, J. Math. Phys.
31,
287 (1990),
http://dx.doi.org/10.1063/1.529369
[15] M. Thoma and R.T. Sharp, J. Math. Phys.
37, 4750 (1996),
http://dx.doi.org/10.1063/1.531746
[16] F. Pan and C. Dai, Progr. Phys.
24,
216 (2004)
[17] B.G. Wybourne, Lith. J. Phys.
36,
159 (1996)
[18] V.D. Lyakhovsky and S.Yu. Melnikov, J. Phys. A
29, 1075 (1996),
http://dx.doi.org/10.1088/0305-4470/29/5/020
[19] D.S. Sage and L. Smolinsky, Lith. J. Phys.
51, 5 (2011),
http://dx.doi.org/10.3952/lithjphys.51101
[20] D.E. Littlewood,
The Theory of
Group Characters and Matrix
Representations of Groups (Clarendon Press, Oxford, 1940)
[21] S.J. Ališauskas, Lit. Fiz. Sb.
14,
709 (1974) [English transl.:
Sov. Phys. Collection
14(5), 1
(1974)]
[22] R.C. King, J. Phys. A
8,
429 (1975),
http://dx.doi.org/10.1088/0305-4470/8/4/004
[23] I.M. Gel’fand and M.L. Zetlin, Dokl. Akad. Nauk SSSR
71, 825
(1950) [in Russian]
[24] I.M. Gel’fand and M.L. Zetlin, Dokl. Akad. Nauk SSSR
71, 1017
(1950) [in Russian]
[25] D.P. Zhelobenko, Usp. Mat. Nauk
17,
27 (1962) [in Russian]
[26] M. Cerkaski, J. Math. Phys.
28,
989 (1987),
http://dx.doi.org/10.1063/1.527518
[27] D.R. Petersen and K.T. Hecht, Nucl. Phys. A
344, 361 (1980),
http://dx.doi.org/10.1016/0375-9474(80)90397-8
[28] D.J. Rowe, M.J. Carvalho and J. Repka, Rev. Mod. Phys.
84, 711
(2012),
http://dx.doi.org/10.1103/RevModPhys.84.711
[29] S. Ferrara, R. Kalosh, and A. Marrani, J. High Energy Phys.
12(6),
074 (2012),
http://dx.doi.org/10.1007/JHEP06(2012)074
[30] M.F. O’Reilly, J. Math. Phys.
23,
2022 (1982),
http://dx.doi.org/10.1063/1.525258
[31] G. Racah,
Group Theory and
Spectroscopy (Princeton Univ. Press,
New Jersey, 1951)
[32] R. Campoamor-Stursberg, J. Phys. A
44, 025234 (2011),
http://dx.doi.org/10.1088/1751-8113/44/2/025204
[33] A.M. Bincer, J. Math. Phys.
21,
671 (1980),
http://dx.doi.org/10.1063/1.524512
[34] J.F. Cornwell,
Group Theory in
Physics (Academic Press, New York,
1984)
[35] E.S. Bernardes, J. Phys. A
32,
6295 (1999),
http://dx.doi.org/10.1088/0305-4470/32/35/308