[PDF]    http://dx.doi.org/10.3952/lithjphys.53201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 7183 (2013)


BRANCHING RULES OF sp(6) ↓ sp(4) × sp(2) AND BASES OF EIGENSTATES
R. Campoamor-Stursberg
I.M.I. and Dpto. Geometría y Topología,
Universidad Complutense de Madrid, Plaza de Ciencias 3, E-28040 Madrid, Spain

E-mail: rutwig@mat.ucm.es

Received 26 September 2012; revised 16 November 2012; accepted 20 June 2013

An explicit formula describing the branching of representations of sp(6) according to the reduction chain sp(6) ↓ sp(4) × sp(2) is given. This allows to classify the multiplicity free reductions and, moreover, obtain the multiplicity for each sp(4) × sp(2) representation. We compare the method with the approach based on the theory of S-functions, pointing out the strengths and weaknesses of the explicit formula. The branching rule is used to construct an orthogonal basis of eigenstates for sp(6), where degenerations are solved using a scalar instead of the standard missing label operator.
Keywords: representation of Lie groups, algebraic methods
PACS: 02.20.Qs, 02.40.Sv, 03.65.Fd


sp(6) ↓ sp(4) × sp(2) ŠAKOJIMOSI TAISYKLĖS IR TIKRINIŲ BŪSENŲ BAZĖS
R. Campoamor-Stursberg
Madrido Complutense universitetas, Madridas, Ispanija

Pateikta išreikštinė formulė, aprašanti sp(6) įvaizdžių šakojimąsi pagal redukcijos grandinėlę sp(6) ↓ sp(4) × sp(2). Tai leidžia klasifikuoti redukcijas, neturinčias pasikartojimų, bei gauti pasikartojimų skaičių kiekvienam sp(4) × sp(2) įvaizdžiui. Metodas palyginamas su tuo, kas gaunama remiantis S-funkcijų teorija, nurodant išreikštinės formulės privalumus ir trūkumus. Šakojimosi taisyklė panaudota sudaryti ortogonalią sp(6) tikrinių funkcijų bazę, kurioje išsigimimai sutvarkomi taikant skaliarą vietoje įprastinio trūkstamos žymos operatoriaus.


References / Nuorodos

[1] Yu.B. Rumer and A.I. Fet, Teoriya unitarnoy simmetrii (Nauka, Moskva, 1970) [in Russian]
[2] H. Georgi, Lie Algebras in Particle Physics (Perseus Books, Reading MA, 1999)
[3] M. Chaichian and R. Hagedorn, Symmetry in Quantum Mechanics: from Angular Momentum to Supersymmetry (Institute of Physics Pub., Philadelphia, 1998)
[4] K. Grudzinski and B.G. Wybourne, J. Phys. A 29, 6631 (1996),
http://dx.doi.org/10.1088/0305-4470/29/20/017
[5] D.P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya (Nauka, Moskva, 1973) [in Russian]
[6] R.T. Sharp, Proc. Camb. Phil. Soc. 68, 571 (1970),
http://dx.doi.org/10.1017/S030500410004634X
[7] A.J. Coleman, J. Math. Phys. 27, 1933 (1986),
http://dx.doi.org/10.1063/1.527012
[8] L.J. Boya and R. Campoamor-Stursberg, J. Phys. A 42, 235203 (2009),
http://dx.doi.org/10.1088/1751-8113/42/23/235203
[9] W.G. McKay, J. Patera, and D.R Rand, Tables of Representations of Simple Lie Algebras (CRM, Montréal, 1990)
[10] B.G. Wybourne, Euromath Bulletin 2, 145 (1996)
[11] E.S. Bernardes, Comput. Phys. Commun. 130, 137 (2000),
http://dx.doi.org/10.1016/S0010-4655(00)00006-0
[12] R. Feger and T.W. Kephart, arXiv:1206.6379v1 (2012),
http://lanl.arxiv.org/abs/1206.6379v1
[13] A. Klein and E.R. Marshalek, Rev. Mod. Phys. 63, 375 (1991),
http://dx.doi.org/10.1103/RevModPhys.63.375
[14] H. Fu and C. Sun, J. Math. Phys. 31, 287 (1990),
http://dx.doi.org/10.1063/1.529369
[15] M. Thoma and R.T. Sharp, J. Math. Phys. 37, 4750 (1996),
http://dx.doi.org/10.1063/1.531746
[16] F. Pan and C. Dai, Progr. Phys. 24, 216 (2004)
[17] B.G. Wybourne, Lith. J. Phys. 36, 159 (1996)
[18] V.D. Lyakhovsky and S.Yu. Melnikov, J. Phys. A 29, 1075 (1996),
http://dx.doi.org/10.1088/0305-4470/29/5/020
[19] D.S. Sage and L. Smolinsky, Lith. J. Phys. 51, 5 (2011),
http://dx.doi.org/10.3952/lithjphys.51101
[20] D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups (Clarendon Press, Oxford, 1940)
[21] S.J. Ališauskas, Lit. Fiz. Sb. 14, 709 (1974) [English transl.: Sov. Phys. Collection 14(5), 1 (1974)]
[22] R.C. King, J. Phys. A 8, 429 (1975),
http://dx.doi.org/10.1088/0305-4470/8/4/004
[23] I.M. Gel’fand and M.L. Zetlin, Dokl. Akad. Nauk SSSR 71, 825 (1950) [in Russian]
[24] I.M. Gel’fand and M.L. Zetlin, Dokl. Akad. Nauk SSSR 71, 1017 (1950) [in Russian]
[25] D.P. Zhelobenko, Usp. Mat. Nauk 17, 27 (1962) [in Russian]
[26] M. Cerkaski, J. Math. Phys. 28, 989 (1987),
http://dx.doi.org/10.1063/1.527518
[27] D.R. Petersen and K.T. Hecht, Nucl. Phys. A 344, 361 (1980),
http://dx.doi.org/10.1016/0375-9474(80)90397-8
[28] D.J. Rowe, M.J. Carvalho and J. Repka, Rev. Mod. Phys. 84, 711 (2012),
http://dx.doi.org/10.1103/RevModPhys.84.711
[29] S. Ferrara, R. Kalosh, and A. Marrani, J. High Energy Phys. 12(6), 074 (2012),
http://dx.doi.org/10.1007/JHEP06(2012)074
[30] M.F. O’Reilly, J. Math. Phys. 23, 2022 (1982),
http://dx.doi.org/10.1063/1.525258
[31] G. Racah, Group Theory and Spectroscopy (Princeton Univ. Press, New Jersey, 1951)
[32] R. Campoamor-Stursberg, J. Phys. A 44, 025234 (2011),
http://dx.doi.org/10.1088/1751-8113/44/2/025204
[33] A.M. Bincer, J. Math. Phys. 21, 671 (1980),
http://dx.doi.org/10.1063/1.524512
[34] J.F. Cornwell, Group Theory in Physics (Academic Press, New York, 1984)
[35] E.S. Bernardes, J. Phys. A 32, 6295 (1999),
http://dx.doi.org/10.1088/0305-4470/32/35/308