A. Čerškus
, J. Kundrotas
, V. Nargelienė
,
A. Sužiedėlis
, S. Ašmontas
, J. Gradauskas
,
E. Johannessen
, and A. Johannessen
This paper presents the
photoluminescence spectra and light emission lifetimes in GaAs/Al0.3Ga0.7As
structures designed for microwave and terahertz detectors. The
photoluminescence and light emission lifetimes were investigated both
before and after etching of the cap-layers, and possible mechanisms of
carrier recombination are discussed. The characteristic time of the
free exciton emission corresponds to 0.5 ns at a temperature of 3.6 K.
The recombination lifetime of the free electron acceptor was measured
to be 22–25 ns in GaAs structures and 4–15 ns in AlGaAs structures. The
emission lifetime of deep Si level having 170 meV activation energy in
AlGaAs layer was found to be equal to 40 ns. The excitonic
photoluminescence maxima of n+/n-GaAs and n+/n-Al0.3Ga0.7As
homojunction structures in comparison to n-GaAs and n-Al0.3Ga0.7As
were shifted by approximately 200 ps. This suggested that the drift of
free carriers is important in the formation of free excitons in n-GaAs and n-Al0.3Ga0.7As
layers.
References
/ Nuorodos
[1] P.H. Siegel, Terahertz technology in biology and medicine, IEEE
Trans. Microw. Theory Tech.
52(10),
2438–2447 (2004),
http://dx.doi.org/10.1109/TMTT.2004.835916
[2] J. Federici and L. Moeller, Review of terahertz and subterahertz
wireless communications, J. Appl. Phys.
107(11), 111101–22 (2010),
http://dx.doi.org/10.1063/1.3386413
[3] H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama,
Enhancement of terahertz electromagnetic wave emission from an undoped
GaAs/
n-type GaAs epitaxial
layer structure, Appl. Phys. Lett.
93(8),
081916–3 (2008),
http://dx.doi.org/10.1063/1.2976436
[4] A. Reklaitis, Comparison of efficiencies of GaAs-based pulsed
terahertz emitters, J. Appl. Phys.
101(11),
116104–3 (2007),
http://dx.doi.org/10.1063/1.2739336
[5] A.G.U. Perera, H.X. Yuan, S.K. Gamage, W.Z. Shen, M.H. Francombe,
H.C. Liu, M. Buchanan, and W.J. Schaff, GaAs multilayer
p+-
i homojunction far-infrared
detectors, J. Appl. Phys.
81(7),
3316–3319 (1997),
http://dx.doi.org/10.1063/1.364356
[6] A.G.U. Perera, in:
Advances in
Infrared Photodetectors, Semiconductors
and Semimetals, Vol. 84, eds. S.D. Gunapala, D.R. Rhiger, and C.
Jagadish (Academic Press, San Diego, 2011) pp. 243–302,
http://www.amazon.co.uk/Advances-Photodetectors-Semiconductors-Semimetals-ebook/dp/B005C9GB0W/
[7] A.B. Weerasekara, M.B.M. Rinzan, R.C. Jayasinghe, S.G. Matsik,
A.G.U. Perera, M. Buchanan, H.C. Liu, G. von Winckel, A. Stintz, and S.
Krishna, Single and multi emitter terahertz detectors using
n-type GaAs/AlGaAs
heterostructures, IEEE Sensors 2007 Conference, 507–510 (2007),
http://dx.doi.org/10.1109/ICSENS.2007.4388447
[8] A. Sužiedėlis, S. Ašmontas, J. Kundrotas, J. Gradauskas, E.
Širmulis, A. Čerškus, and V. Nargelienė, Planar heterojunction diodes
for microwave and infrared applications, in:
Advanced Optical Materials and Devices
(AOMD-7): 7th International Conference: Vilnius, Lithuania, 28–31
August, 2011: Program and Abstracts (Vilnius, 2011) p. 74
[9] A.Y. Cho, Growth and properties of III–V semiconductors by
molecular beam epitaxy, in:
Molecular
Beam Epitaxy and Heterostructures, eds. L.L. Chang and K. Ploog
(Martinus Nijhoff Publishers, Dordrecht, 1985) pp. 191–226,
http://dx.doi.org/10.1007/978-94-009-5073-3_6
[10] W.T. Tsang, Molecular beam epitaxy for III–V compound
semiconductors, in:
Lightware
Communications Technology, Semiconductors
and Semimetals, Vol. 22, Part A, ed. W.T. Tsang (Academic Press,
London, 1985) pp. 95-207
[11] W. Becker,
Advanced
Time-Correlated Single Photon Counting Techniques (Springer
Berlin Heidelberg, New York, 2005),
http://dx.doi.org/10.1007/3-540-28882-1
[12] S.B. Nam, D.C. Reynolds, C.W. Litton, R.J. Almassy, T.C. Collins,
and C.M. Wolfe, Free-exciton energy spectrum in GaAs, Phys. Rev. B
13(2), 761–767 (1976),
http://dx.doi.org/10.1103/PhysRevB.13.761
[13] A. Čerškus, J. Kundrotas, V. Nargelienė, A. Sužiedėlis, S.
Ašmontas, J. Gradauskas, A. Johannessen, and E. Johannessen,
Photoluminescence characterisation of GaAs/AlGaAs structures designed
for microwave and terahertz detectors, Lith. J. Phys.
51(4), 330–334 (2011),
http://dx.doi.org/10.3952/lithjphys.51406
[14] D.V. O’Connor and D. Phillips,
Time-Correlated
Single Photon Counting (Academic Press, London, 1984),
http://store.elsevier.com/product.jsp?isbn=9780323141444
[15] Origin: Convolution/Deconvolution Example,
http://www.originlab.com/index.aspx?go=Products/Origin/DataAnalysis/SignalProcessing/Convolution&pid=67
[16] E. Grilli, M. Guzzi, R. Zamboni, and L. Pavesi, High-precision
determination of the temperature dependence of the fundamental energy
gap in gallium arsenide, Phys. Rev. B
45(4),
1638–1644 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.1638
[17] J. Vaitkus and J. Viščakas, On the determination of parameters of
defect levels, Lith. J. Phys.
6(1),
65 (1966)
[18] G.W. ’t Hooft, W.A.J.A. van der Poel, L.W. Molenkamp, and C.T.
Foxon, Giant oscillator strength of free excitons in GaAs, Phys. Rev. B
35(15), 8281–8284 (1987),
http://dx.doi.org/10.1103/PhysRevB.35.8281
[19] A. Čerškus, V. Nargelienė, J. Kundrotas, A. Sužiedėlis, S.
Ašmontas, J. Gradauskas, A. Johannessen, and E. Johannessen,
Enhancement of the excitonic photoluminescence in
n+/
i-GaAs by controlling the thickness
and impurity concentration of the
n+
layer, Acta Phys. Pol. A
119(2),
154–157 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-19.html
[20] V. Nargelienė, S. Ašmontas, A. Čerškus, J. Gradauskas, J.
Kundrotas, and A. Sužiedėlis, Peculiarities of excitonic
photoluminescence in Si
δ-doped
GaAs structures, Acta Phys. Pol. A
119(2),
177–179 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-26.html
[21] J. Kundrotas, A. Čerškus, V. Nargelienė, A. Sužiedėlis, S.
Ašmontas, J. Gradauskas, A. Johannessen, E. Johannessen, and V.
Umansky, Enhanced exciton photoluminescence in the selectively Si-doped
GaAs/Al
xGa
1−xAs heterostructures, J.
Appl. Phys.
108(6), 063522–7
(2010),
http://dx.doi.org/10.1063/1.3483240
[22] J. Kundrotas, A. Čerškus, J. Liberis, A. Matulionis, J.H. Leach,
and A.H. Morkoç, Enhancement and narrowing of excitonic lines in
AlInN/GaN heterostructures, Acta Phys. Pol. A
119(2), 173–176 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-25.html
[23] T. Schmidt, K. Lischka, and W. Zulehner, Excitation-power
dependence of the near-band edge photoluminescence of semiconductors,
Phys. Rev. B
45(16), 8989–8994
(1992),
http://dx.doi.org/10.1103/PhysRevB.45.8989
[24] J.X. Shen, R. Pittini, Y. Oka, and E. Kurtz, Exciton dynamics in
GaAs/Ga
1-xAl
xAs heterojunctions and GaAs
epilayers, Phys Rev. B
61(4),
2765–2772 (2000),
http://dx.doi.org/10.1103/PhysRevB.61.2765
[25] L.M. Smith, D.J. Wolford, R. Venkatasubramanian, and S.K. Ghandhi,
Radiative recombination in surface-free
n+/
n–/
n+ GaAs homostructures,
Appl. Phys. Lett.
57(15),
1572–1574 (1990),
http://dx.doi.org/10.1063/1.103357