ON ERGODIC
RELAXATION TIME IN THE THREE-DIMENSIONAL ISING MODEL
R. Grigalaitis
a, S. Lapinskas
a, J. Banys
a
, and E. E. Tornau
b
aFaculty of Physics, Vilnius
University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
bSemiconductor Physics
Institute, Center for Physical Sciences and Technology, Goštauto 11, LT-01108
Vilnius, Lithuania
E-mail: robertas.grigalaitis@ff.vu.lt
Received 10 April 2013; revised 30 April 2013; accepted 20 June 2013
We have studied the dynamical decay of
the autocorrelation function of the 3D Ising model for different sizes
L = 20–52 of spin cluster-cubes. The behaviour of the longest, ergodic
relaxation time, τe,
of a finite domain below the phase transition temperature
Tc was mostly considered for two types of phase transition
dynamics. A study of the scaling properties of τe demonstrates a negligible
difference between the types of dynamics used, but a considerable difference
for different boundary conditions. In contrast to the known result for periodic
boundary conditions (τe
~ Lz exp [const(
Lєν)2], where
z and ν are the dynamical
and correlation length exponents, respectively, and
є = 1 – T/
Tc), the ergodic relaxation time for open boundary conditions
is proportional to Lz
exp [const(Lєν)
2k] with coeffcient
k for lattices explored in this work slightly decreasing with
L in between 1.65 and 1.58. This result implies that only the lattices
of sizes close to or exceeding L
= 300 with open boundary conditions might have ergodic relaxation times similar
to those with perodic boundary conditions.
Keywords:
Ising model, classical Monte Carlo simulations, finite size scaling, ergodic
relaxation time
PACS: 64.60.an, 64.60.De, 64.60.Ht
APIE ERGODINĘ RELAKSACIJOS TRUKMĘ TRIMAČIAME
ISINGO MODELYJE
R. Grigalaitisa, S. Lapinskasa, J. Banysa
, E. E. Tornaub
aVilniaus universiteto Fizikos
fakultetas, Vilnius, Lietuva
bFizinių ir technologijos
mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lithuania
Tyrėme trimačio Isingo modelio autokoreliacijos
funkcijos slopimo dinamiką skirtingų dydžių (kraštinės ilgis
L = 20–52) kubiniams sukinių klasteriams. Ilgiausios – ergodinės relaksacijos
trukmės τe elgsena baigtinio
dydžio domene, žemesnėse nei fazinio virsmo
Tc temperatūrose, buvo tiriama dviem fazinių virsmų dinamikos
būdais. Trukmės τe skaliavimo savybių analizė parodė tik nedidelius skirtumus
naudojant skirtingą fazinių virsmų dinamiką, tačiau pastebėti gana akivaizdūs
pokyčiai naudojant kitokias kraštines sąlygas. Skirtingai nuo žinomo rezultato,
gauto naudojant periodines kraštines sąlygas
τe ~ Lz
exp [const(Lєν)2],
ergodinė relaksacijos trukmė, kai kraštinės sąlygos yra atviros, yra proporcinga
Lz exp [const(
Lєν)2k
], o koeficientas k mažėja nuo 1,65 iki 1,58, didėjant gardelės dydžiui nuo
L = 20 iki
L = 52. Čia z ir
ν yra atitinkamai krizinės dinaminė ir koreliacijos ilgio eksponentės,
o є = 1-
T/Tc. Daroma
išvada, kad ergodinės relaksacijos trukmės esantatviroms ir periodinėms kraštinėms
sąlygoms bus panašios, kai gardelių kraštinių ilgiai bus ne mažesni nei
L = 300.
References
/ Nuorodos
[1] K. Binder and E. Luijten, Monte Carlo tests of renormalization-group
predictions for critical phenomena in Ising models, Phys. Rep.
344, 179–253 (2001),
http://dx.doi.org/
10.1016/S0370-1573(00)00127-7
[2] A. Pelisseto and E. Vicari, Critical phenomena and renormalization-group
theory, Phys. Rep.
368, 549–727
(2002),
http://dx.doi.org/
10.1016/S0370-1573(02)00219-3
[3] Z.-D. Zhang, Conjectures on the exact solution of three-dimensional (3D)
simple orthorhombic Ising lattices, Philos. Mag.
87, 5309–5419 (2007),
http://dx.doi.org/10.1080/14786430701646325
[4] K. Binder and D.W. Heermann,
Monte
Carlo Simulations in Statistical Physics (Springer-Verlag, Berlin,
Heidelberg, 1988),
http://dx.doi.org/10.1007/978-3-662-08854-8
[5] K. Binder, Finite size scaling analysis of Ising model block distribution
functions, Z. Phys. B
43, 119–140
(1981),
http://dx.doi.org/10.1007/BF01293604
[6] K. Binder, Monte Carlo calculation of the surface tension for two- and
three-dimensional lattice-gas models, Phys. Rev. A
25, 1699–1709 (1982),
http://dx.doi.org/10.1103/PhysRevA.25.1699
[7] S. Wansleben and D.P. Landau, Monte Carlo investigation of critical dynamics
in three-dimensional Ising model, Phys. Rev. B
43, 6006–6014 (1991),
http://dx.doi.org/10.1103/PhysRevB.43.6006
[8] N. Ito, Non-equilibrium relaxation and interface energy of the Ising
model, Physica A
196, 591–614 (1993)
,
http://dx.doi.org/
10.1016/0378-4371(93)90036-4
[9] F.-G. Wang and C.-K. Hu, Universality in dynamic critical phenomena,
Phys. Rev. E
56, 2310–2313 (1997)
http://dx.doi.org/10.1103/PhysRevE.56.2310
[10] M. Collura, Off-equilibrium relaxational dynamics with an improved Ising
Hamiltonian, J. of Stat. Mech. Theor. Exp. P12036, 1–14 (2010),
http://dx.doi.org/10.1088/1742-5468/2010/12/P12036
[11] A.S. Krinitsyn, V.V. Prudnikov, and P.V. Prudnikov, Calculations of
the dynamical critical exponent using the asymptotic series summation method,
Theor. Math. Phys.
147, 561–575
(2006),
http://dx.doi.org/10.1007/s11232-006-0063-z
[12] W. Koch, V. Dohm, and D. Stauffer, Order-parameter relaxation times
of finite three-dimensional Ising-like systems, Phys. Rev. Lett.
77, 1789–1792 (1996),
http://dx.doi.org/
10.1103/PhysRevLett.77.1789
[13] W. Koch and V. Dohm, Finite-size effects on critical diffusion and relaxation
towards metastable equilibrium, Phys. Rev. E
58, R1179–R1182 (1998),
http://dx.doi.org/10.1103/PhysRevE.58.R1179
[14] R. Grigalaitis, S. Lapinskas, J. Banys, and E.E. Tornau, Simulation
of relaxation times distribution for relaxors using distribution of three-dimensional
Ising-type clusters, Ferroelectrics
415
(1), 40–50 (2011),
http://dx.doi.org/
10.1080/00150193.2011.577370
[15] M.E.J. Newman, and G.T. Barkema,
Monte Carlo Methods in Statistical Physics (Clarendon, Oxford, 1999),
http://ukcatalogue.oup.com/product/9780198517979.do
[16] H. Jang, M.J. Grimson, and T.B. Woolf, Stochastic dynamics and the dynamic
phase transition in thin ferromagnetic films, Phys. Rev. E
70, 047101 (2004),
http://dx.doi.org/10.1103/PhysRevE.70.047101
[17] R.J. Glauber, Time dependent statistics of the Ising model, J. Math.
Phys.
4, 294–307 (1963),
http://dx.doi.org/10.1063/1.1703954
[18] A.B. Bortz, M.H. Kalos, and J.L. Lebowitz, A new algorithm for Monte
Carlo simulation of Ising spin systems, J. Comput. Phys.
17, 10–18 (1975),
http://dx.doi.org/10.1016/0021-9991(75)90060-1
[19] A.M. Ferrenberg and D.P. Landau, Critical behavior of the three-dimensional
Ising model: a high resolution Monte Carlo study, Phys. Rev. B
44, 5081–5091 (1991),
http://dx.doi.org/10.1103/PhysRevB.44.5081
[20] R. Häggkvist, A. Rosengren, P.H. Lundow, K. Markström, D. Andrén, and
P. Kundrotas, On the Ising model for the simple cubic lattice, Adv. Phys.
56, 653–755 (2007),
http://dx.doi.org/10.1080/00018730701577548
[21] A. Miyashita and H. Takano, Dynamical nature of the phase transition
of the two-dimensional kinetic Ising model, Prog. Theor. Phys.
73, 1122–1140 (1985),
http://dx.doi.org/10.1143/PTP.73.1122