J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V. Jucienė
Two types of electrically heated THz radiation
emitters: (1) the Globar-SiC (black body), and (2) the highly doped GaAs
plate, are considered as selective high-power terahertz (THz) radiation sources.
The spectrum of the new type GaAs emitter in the 9–15 THz frequency range
is determined by oscillations of free electron plasma and coupled plasmon–phonons.
The thermally stimulated resonant emission of surface plasmon–phonon polaritons
is experimentally observed. The radiative modes of coupled surface plasmon–phonon
polaritons in the n+-GaAs plate are identified.
References
/ Nuorodos
[1] X.-C. Zhang and J. Xu,
Introduction
to THz Wave Photonics (Springer, Berlin, 2010),
http://dx.doi.org/10.1007/978-1-4419-0978-7
[2] Y.-S. Lee,
Principles of Terahertz
Science and Technology (Springer, Berlin, 2009),
http://www.springer.com/engineering/electronics/book/978-0-387-09539-4
[3]
Surface Polaritons, eds. V.M.
Agranovich and D.L. Mills
(North
Holland, Amsterdam, 1982),
http://www.amazon.co.uk/Surface-Polaritons-Electromagnetic-Interfaces-Condensed/dp/0444861653/
[4] A. Krotkus, Semiconductors for terahertz photonics applications, J. Phys.
D: Appl. Phys.
43, 273001 (2010),
http://dx.doi.org/10.1088/0022-3727/43/27/273001
[5] Y. Miura, A. Kamataki, M. Uzuki, T. Sasaki, J. Nishizawa, and T. Sawai,
Terahertz-wave spectroscopy for precise histopathological imaging of tumor
and non-tumor lesions in paraffin sections, Tohoku J. Exp. Med.
223, 291 (2011),
http://dx.doi.org/10.1620/tjem.223.291
[6] G. Filippidis, M. Massaouti, A. Selimis, E.J. Gualda, J.-M. Manceau,
and S. Tzortzakis, Nonlinear imaging and THz diagnostic tools in the service
of Cultural Heritage, Appl. Phys. A
106
, 257–263 (2012),
http://dx.doi.org/10.1007/s00339-011-6691-7
[7] P. Shumyatsky and R.R. Alfano, Terahertz sources, J. Biomed. Opt.
16, 033001–033001-9 (2011),
http://dx.doi.org/10.1117/1.3554742
[8] W. Knap, H. Videlier, S. Nadar, D. Coquillat, N. Dyakonova, F. Teppe,
M. Bialek, M. Grynberg, K. Karpierz, J. Lusakowski, K. Nogajewski, D. Seliuta,
I. Kašalynas, and G. Valušis, Field effect transistors for terahertz detection
– silicon versus III–V materials issue, Opto-Electronics Rev.
18(3), 225–230 (2010),
http://dx.doi.org/10.2478/s11772-010-1018-7
[9] J. Požela, K. Požela, A. Šilėnas, E. Širmulis, and V. Jucienė, Interaction
of terahertz radiation with surface and interface plasmon–phonons in AlGaAs/GaAs
and GaN/Al
2O
3 heterostructures, Appl. Phys. A
110, 153–156 (2013),
http://dx.doi.org/10.1007/s00339-012-7473-6
[10] J. Lloyd-Hughes and T.-I. Jeon, A review of the terahertz conductivity
of bulk and nano-materials, J. Infrared Milli. Terahz. Waves
33, 871–925 (2012),
http://dx.doi.org/10.1007/s10762-012-9905-y
[11] J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V. Jucienė, New type
of 5–22 THz radiation sources based on semiconductor resonant reflectors,
Phys. Status Solidi C
9, 1696–1698
(2012),
http://dx.doi.org/10.1002/pssc.201100641
[12] P.Y. Yu and M. Cardona,
Fundamentals
of Semiconductors (Springer, Berlin, 2005) pp. 298–303, 339,
http://dx.doi.org/10.1007/b137661
[13] M. Cardona, Fresnel reflection and surface plasmons, Am. J. Phys.
39, 1277 (1971),
http://dx.doi.org/10.1119/1.1976627