[PDF]    http://dx.doi.org/10.3952/lithjphys.53306

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 163167 (2013)


SiC AND GaAs EMITTERS AS SELECTIVE TERAHERTZ RADIATION SOURCES
J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V. Jucienė
Semiconductor Physics Institute, Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: pozela@pfi.lt

Received 16 April 2013; revised 16 May 2013; accepted 20 June 2013

Two types of electrically heated THz radiation emitters: (1) the Globar-SiC (black body), and (2) the highly doped GaAs plate, are considered as selective high-power terahertz (THz) radiation sources. The spectrum of the new type GaAs emitter in the 9–15 THz frequency range is determined by oscillations of free electron plasma and coupled plasmon–phonons. The thermally stimulated resonant emission of surface plasmon–phonon polaritons is experimentally observed. The radiative modes of coupled surface plasmon–phonon polaritons in the n+-GaAs plate are identified.
Keywords: THz radiation sources, black-body radiation, coupled plasmon–phonon polaritons, SiC, GaAs
PACS: 78.40.Fy, 78.55.Cr, 44.40.+a, 71.36.+c


SELEKTYVŪS TERAHERCŲ SPINDULIUOTĖS ŠALTINIAI SU SiC IR GaAs EMITERIAIS
J. Požela, E. Širmulis, K. Požela, A. Šilėnas, V. Jucienė
Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Nagrinėjami dviejų tipų emiteriai: 1) SiC spinduolis-globaras (juodas kūnas) ir 2) stipriai legiruota GaAs plokštelė, kaip selektyvūs didelės galios terahercų (THz) spinduliuotės šaltiniai. Naujo tipo GaAs emiterio spektras 9–15 THz dažnių ruože yra sąlygojamas laisvųjų elektronų plazmos ir surištų plazmon-fononų osciliacijomis. Eksperimentiškai stebėta termostimuliuota paviršinių plazmon-fonon-poliaritonų rezonansinė THz emisija. Identifikuotos paviršinių plazmon-fonon-poliaritonų spindulinės modos n+-GaAs plokštelėje.



References / Nuorodos

[1] X.-C. Zhang and J. Xu, Introduction to THz Wave Photonics (Springer, Berlin, 2010),
http://dx.doi.org/10.1007/978-1-4419-0978-7
[2] Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, Berlin, 2009),
http://www.springer.com/engineering/electronics/book/978-0-387-09539-4
[3] Surface Polaritons, eds. V.M. Agranovich and D.L. Mills (North Holland, Amsterdam, 1982),
http://www.amazon.co.uk/Surface-Polaritons-Electromagnetic-Interfaces-Condensed/dp/0444861653/
[4] A. Krotkus, Semiconductors for terahertz photonics applications, J. Phys. D: Appl. Phys. 43, 273001 (2010),
http://dx.doi.org/10.1088/0022-3727/43/27/273001
[5] Y. Miura, A. Kamataki, M. Uzuki, T. Sasaki, J. Nishizawa, and T. Sawai, Terahertz-wave spectroscopy for precise histopathological imaging of tumor and non-tumor lesions in paraffin sections, Tohoku J. Exp. Med. 223, 291 (2011),
http://dx.doi.org/10.1620/tjem.223.291
[6] G. Filippidis, M. Massaouti, A. Selimis, E.J. Gualda, J.-M. Manceau, and S. Tzortzakis, Nonlinear imaging and THz diagnostic tools in the service of Cultural Heritage, Appl. Phys. A 106 , 257–263 (2012),
http://dx.doi.org/10.1007/s00339-011-6691-7
[7] P. Shumyatsky and R.R. Alfano, Terahertz sources, J. Biomed. Opt. 16, 033001–033001-9 (2011),
http://dx.doi.org/10.1117/1.3554742
[8] W. Knap, H. Videlier, S. Nadar, D. Coquillat, N. Dyakonova, F. Teppe, M. Bialek, M. Grynberg, K. Karpierz, J. Lusakowski, K. Nogajewski, D. Seliuta, I. Kašalynas, and G. Valušis, Field effect transistors for terahertz detection – silicon versus III–V materials issue, Opto-Electronics Rev. 18(3), 225–230 (2010),
http://dx.doi.org/10.2478/s11772-010-1018-7
[9] J. Požela, K. Požela, A. Šilėnas, E. Širmulis, and V. Jucienė, Interaction of terahertz radiation with surface and interface plasmon–phonons in AlGaAs/GaAs and GaN/Al2O3 heterostructures, Appl. Phys. A 110, 153–156 (2013),
http://dx.doi.org/10.1007/s00339-012-7473-6
[10] J. Lloyd-Hughes and T.-I. Jeon, A review of the terahertz conductivity of bulk and nano-materials, J. Infrared Milli. Terahz. Waves 33, 871–925 (2012),
http://dx.doi.org/10.1007/s10762-012-9905-y
[11] J. Požela, E. Širmulis, K. Požela, A. Šilėnas, and V. Jucienė, New type of 5–22 THz radiation sources based on semiconductor resonant reflectors, Phys. Status Solidi C 9, 1696–1698 (2012),
http://dx.doi.org/10.1002/pssc.201100641
[12] P.Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 2005) pp. 298–303, 339,
http://dx.doi.org/10.1007/b137661
[13] M. Cardona, Fresnel reflection and surface plasmons, Am. J. Phys. 39, 1277 (1971),
http://dx.doi.org/10.1119/1.1976627