V. Valuntaitė
, D. Jasaitis
, R. Girgždienė
, and A. Girgždys
Received 13 February 2013; revised 17 June 2013; accepted 20 June 2013
This paper presents the study of variation
in ozone concentration and volumetric activities of radon decay products
as well as their relationship at the ground level of the atmosphere on the
Curonian Spit. The simultaneous measurements of the ground-level ozone concentration
and volumetric activity of radon progeny gave a possibility to identify the
presence of a breeze phenomenon on the Curonian Spit during an extreme weather
event in summer when ozone concentration exceeded the target value of 120
μg m−3 that can have
a negative impact on human health. The evident influence of wind direction
on ozone concentration and volumetric activity of radon progeny was estimated.
Tirta ozono koncentracijos ir radono skilimo
produktų tūrinio aktyvumo kaita bei jų tarpusavio ryšys atmosferos priežemio
sluoksnyje Kuršių nerijoje. Tuo pačiu metu atlikti ozono koncentracijos ir
radono skilimo produktų tūrinio aktyvumo matavimai leido 2010 m. liepos mėn.
nustatyti brizo reiškinį pajūrio zonoje. Nustatyta, kad esant ekstremalioms
oro sąlygoms ozono koncentracija Baltijos jūros pakrantėje viršija 120
μg m−3, t. y. lygį, kuris gali žalingai veikti žmogaus
sveikatą. Vertinant meteorologinių parametrų įtaką ozono koncentracijos ir
radono skilimo produktų tūrinio aktyvumo eigai priežemio ore nustatyta, kad
didžiausią poveikį turėjo vėjo kryptis.
References
/ Nuorodos
[1] J. Zheng, J.L. Swall, W.M. Cox, and J.M. Davis, Interannual variation
in meteorologically adjusted ozone levels in the eastern United States: A
comparison of two approaches, Atmos. Environ.
41(4), 705–716 (2007),
http://dx.doi.org/
10.1016/j.atmosenv.2006.09.010
[2] J.M. Godowitch, A.B. Gilliland, R.R. Draxler, and S.T. Rao, Modeling
assessment of point source NO
x
emission reductions on ozone air quality in the eastern United States, Atmos.
Environ.
42(1), 87–100 (2008),
http://dx.doi.org/
10.1016/j.atmosenv.2007.09.032
[3] Z. Zhang, F. Wang, F. Costabile, I. Allegrini, F. Liu, and W. Hong, Interpretation
of ground-level ozone episodes with atmospheric stability index measurement,
Environ. Sci. Pollut. Res.
19(8),
3421–3429 (2012),
http://dx.doi.org/10.1007/s11356-012-0867-3
[4] M.C. Subbaramu and K.G. Vohra, Investigations on radioactive equilibrium
in the lower atmosphere between radon and its short-lived decay products,
Tellus
21(3), 395–403 (1969),
http://dx.doi.org/10.1111/j.2153-3490.1969.tb00452.x
[5] V. Pont and J. Fontan, Correlation between continental air mass and ozone
concentrations, J. Geophys. Res. D 105(14), 17699–17707 (2000),
http://dx.doi.org/10.1029/2000JD900034
[6] L. Sesana, L. Barbieri, U. Facchini, and G. Marcazzan,
222
Radon as a tracer of atmospheric motions: a study in Milan, Radiat. Prot.
Dosim.
78(1), 65–72 (1998),
http://dx.doi.org/
10.1093/oxfordjournals.rpd.a032335
[7] R. Girgzdiene, S. Bycenkiene, and A. Girgzdys, Variations and trends
of AOT40 and ozone in the rural areas of Lithuania, Environ. Monit. Assess.
127(1–3), 327–335 (2007),
http://dx.doi.org/10.1007/s10661-006-9283-9
[8] J.A. Adame, E. Serrano, J.P. Bolivar, and B.A. De La Morena, On the tropospheric
ozone variations in a coastal area of southwestern Europe under a mesoscale
circulation, J. Appl. Meteorol. Climatol.
49(4), 748–759 (2010),
http://dx.doi.org/10.1175/2009JAMC2097.1
[9] D.K. Martins, R.M. Stauffer, A.M. Thompson, T.N. Knepp, and M. Pippin,
Surface ozone at a coastal suburban site in 2009 and 2010: Relationships
to chemical and meteorological processes, J. Geophys. Res. D
117(5) (2012),
http://dx.doi.org/10.1029/2011JD016828
[10] R. Girgzdiene and A. Girgzdys, The influence of wind parameters on the
ozone concentration variation on the Baltic Sea coast, Environ. Chem. Phys.
23(3–4), 112–117 (2001)
[11] R. Girgzdiene, A. Girgzdys, M. Frolova, and I. Lyulko, Ozone at two
stations on the Baltic seashore, Environ. Chem. Phys.
22(2), 59–64 (2000)
[12] H. Bergström, Boundary-layer modelling for wind climate estimates, Wind
Eng.
25(5), 289–299 (2001),
http://dx.doi.org/
10.1260/030952401760177864
[13] S. Whittlestone, Radon measurements as an aid and interpretation of
atmospheric monitoring, J. Atmos. Chem.
3(1), 187–201 (1985),
http://dx.doi.org/10.1007/BF00049376
[14] I.A. Ghita and A. Vasilescu, Radon assessment with solid-state nuclear
track detectors in Bucgarest and its surrounding region, Rom. Rep. Phys.
63(4), 940–947 (2011),
http://rrp.infim.ro/2011_63_4/art05Ghita.pdf
[15] B. Burnett, T. Nelson, R. Corbett, L. Robinson, J. Weaver, J.E. McKisson,
and D. Lane-Smith, Improvements in the Measurement of Rn-222 in Natural Waters,
in:
Proc. 44th Annual Conference on Bioassay,
Analytical, and Environmental Radiochemistry (Albuquerque, New Mexico,
15–20 November 1998),
http://www.nucfilm.com/burnett_98.pdf
[16] D. Jasaitis and A. Girgždys, Hourly measurement method for radon progeny
volumetric activity in air, J. Environ. Eng. Landsc. Manag.
15(3), 158–165 (2007),
http://dx.doi.org/10.1080/16486897.2007.9636924
[17] L.M. David and P.R. Nair, Diurnal and seasonal variability of surface
ozone and NO
x at a tropical
coastal site: Association with mesoscale and synoptic meteorological conditions,
J. Geophys. Res.
116, D10303 (2011)
http://dx.doi.org/10.1029/2010JD015076
[18] M.W. Gallagher, K.M. Beswick, G. McFiggans, H. Coe, and T.W. Choulartonn,
Ozone dry deposition velocities for coastal waters, Water Air Soil Pollut.
1, 233–242 (2001),
http://dx.doi.org/10.1023/A:1013119524952