E. Stankevičius
, M. Gedvilas
, B. Voisiat
,
M. Malinauskas
, and G. Račiukaitis
The principles of the holographic
lithography technique are reviewed, and the ability in the formation of
structures with different periods by the holographic lithography
technique in SZ2080 is demonstrated. The influence of laser exposure,
phase shift between interfering laser beams, and the used laser
wavelength on the structures fabricated by the four-beam interference
technique has been studied. It is shown that by using the interfering
beams with a different phase is it possible to reduce the period of the
structure √2 times compared to the four interfering beams of the same
phase. Fabrication of micro-structures by the holographic lithography
technique can be realized via multi-photon and single-photon
polymerization processes. The structures created by these two
techniques are compared. Finally, in the experiments with the five-beam
interference, the double-period effect was observed by adding the
zero-order beam with a low intensity. The fabricated periodic
micro-structures have the potential to be used as a scaffold for cell
growth and micro-optics.
Straipsnyje apžvelgiami holografinės
litografijos principai ir demonstruojamos holografinės litografijos
galimybės suformuoti įvairaus periodo mikrodarinius SZ2080
fotopolimere. Taip pat aptariama įvairių lazerinio proceso parametrų –
ekspozicijos trukmės, interferuojančių pluoštų bangos ilgio, fazės
poslinkio tarp interferuojančių pluoštų – įtaka formuojamiems dariniams
ir pademonstruotas dvigubo periodo efektas. Šis efektas atsiranda, kai
prie keturių identiškų pirmo difrakcinio maksimumo pluoštų yra
pridedamas mažo intensyvumo centrinis pluoštas (~7 kartus mažesnis už
pirmo difrakcinio maksimumo pluoštą), tuomet suformuoto periodinio
mikrodarinio kas antras stulpelis yra plonesnis už šalia esantį
stulpelį. Formuojant pakankamai aukštus mikrodarinius (~60 μm) plonesni
stulpeliai ryškinimo proceso metu sugriūna ir yra išplaunami, lieka tik
storesni stulpeliai. Tokiu būdu galima padvigubinti formuojamo
mikrodarinio periodą nemažinant intensyvumo pluoštų persiklojimo
zonoje. Šis efektas gali būti labai naudingas daugiafotoniškai
formuojant didelio periodo struktūras.
Holografinės litografijos būdu suformuoti periodiniai mikrodariniai
gali būti panaudoti biomedicinoje kaip karkasai kamieninėms ląstelėms
auginti, mikrofluidikoje – kontroliuoti skysčių ar dujų tekėjimą.
References
/ Nuorodos
[1] V. Berger, O. Gauthier-Lafaye, and E. Costard, Photonic band gaps
and holography, J. Appl. Phys.
82,
60–64 (1997),
http://dx.doi.org/10.1063/1.365849
[2] M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning, and A.J.
Turberfield, Fabrication of photonic crystals for the visible spectrum
by holographic lithography, Nature
404,
53–56 (2000),
http://dx.doi.org/10.1038/35003523
[3] T. Kondo, S. Matsuo, S. Juodkazis, and H. Misawa, Femtosecond laser
interference technique with diffractive beam splitter for fabrication
of three-dimensional photonic crystals, Appl. Phys. Lett.
79(6), 725–727 (2001),
http://dx.doi.org/10.1063/1.1391232
[4] T. Kondo, S. Juodkazis, V. Mizeikis, S. Matsuo, and H. Misawa,
Fabrication of three-dimensional periodic microstructures in
photoresist SU-8 by phase-controlled holographic lithography, New J.
Phys.
8(10), 250 (2006),
http://dx.doi.org/10.1088/1367-2630/8/10/250
[5] S. Maruo and K. Ikuta, Three-dimensional microfabrication by use of
single-photon-absorbed polymerization, Appl. Phys. Lett.
76(19), 2656–2658 (2000),
http://dx.doi.org/10.1063/1.126742
[6] S. Maruo, O. Nakamura, and S. Kawata, Three-dimensional
microfabrication with two-photon-absorbed photopolymerization, Opt.
Lett.
22(2), 132–134 (1997),
http://dx.doi.org/10.1364/OL.22.000132
[7] I. Divliansky, T.S. Mayer, K.S. Holliday, and V.H. Crespi,
Fabrication of three-dimensional polymer photonic crystal structures
using single diffraction element interference lithography, Appl. Phys.
Lett.
82(11), 1667–1669
(2003),
http://dx.doi.org/10.1063/1.1560860
[8] Y. Zhong, L. Wu, H. Su, K.S. Wong, and H. Wang, Fabrication of
photonic crystals with tunable surface orientation by holographic
lithography, Opt. Express
14(15),
6837–6843 (2006),
http://dx.doi.org/10.1364/OE.14.006837
[9] Y. Zhong, J. Zhou, and K.S. Wong, Two-photon fabrication of
photonic crystals by single-beam laser holographic lithography, J.
Appl. Phys.
107(7), 074311
(2010),
http://dx.doi.org/10.1063/1.3374476
[10] K. Ohlinger, F. Torres, Y. Lin, K. Lozano, D. Xu, and K.P. Chen,
Photonic crystals with defect structures fabricated through a
combination of holographic lithography and two-photon lithography, J.
Appl. Phys.
108(7), 073113
(2010),
http://dx.doi.org/10.1063/1.3493119
[11] M. Malinauskas, P. Danilevicius, E. Balciunas, S. Rekstyte, E.
Stankevicius, D. Baltriukiene, V. Bukelskiene, G. Raciukaitis, and R.
Gadonas, Applications of nonlinear laser nano/microlithography:
fabrication from nanophotonic to biomedical components, Proc. SPIE
8204, 820407-11 (2011),
http://dx.doi.org/10.1117/12.898982
[12] E. Stankevicius, E. Balciunas, M. Malinauskas, G. Raciukaitis, D.
Baltriukiene, and V. Bukelskiene, Holographic lithography for
biomedical applications, Proc. SPIE
8433,
843312-7 (2012),
http://dx.doi.org/10.1117/12.922793
[13] M. Malinauskas, A. Zukauskas, G. Bickauskaite, R. Gadonas, and S.
Juodkazis, Mechanisms of three-dimensional structuring of
photo-polymers by tightly focussed femtosecond laser pulses, Opt.
Express
18(10), 10209–10221
(2010),
http://dx.doi.org/10.1364/OE.18.010209
[14] V. Mizeikis, S. Matsuo, S. Juodkazis, and H. Misawa, Femtosecond
laser microfabrication of photonic crystals, in:
3D Laser Microfabrication, eds. H.
Misawa and S. Juodkazis (WILEY-VCH, Weinheim, 2006) pp. 239–286,
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-3527608400.html
[15] E. Hecht,
Optics
(Addison Wesley, San Francisco, 2002),
http://www.pearsoned.co.uk/bookshop/detail.asp?item=100000000553962
[16] A.F. Lasagni, D. Yuan, P. Shao, and S. Das, Periodic
micropatterning of polyethylene glycol diacrylate hydrogel by laser
interference lithography using nano- and femtosecond pulsed lasers,
Adv. Eng. Mater.
11(3),
B20–B24 (2009),
http://dx.doi.org/10.1002/adem.200800295
[17] M. Ellman, A. Rodríguez, N. Pérez, M. Echeverria, Y.K. Verevkin,
C.S. Peng, T. Berthou, Z. Wang, S.M. Olaizola, and I. Ayerdi,
High-power laser interference lithography process on photoresist:
Effect of laser fluence and polarisation, Appl. Surf. Sci.
255(10), 5537–5541 (2009),
http://dx.doi.org/10.1016/j.apsusc.2008.07.201
[18] H. Misawa, T. Kondo, S. Juodkazis, V. Mizeikis, and S. Matsuo,
Holographic lithography of periodic two- and three-dimensional
microstructures in photoresist SU-8, Opt. Express
14(17), 7943–7953 (2006),
http://dx.doi.org/10.1364/OE.14.007943
[19] E. Molotokaitė, M. Gedvilas, G. Račiukaitis, and V. Girdauskas,
Picosecond laser beam interference ablation of thin metal film on glass
substrate, J. Laser Micro/Nanoeng.
5,
74–79 (2010),
http://dx.doi.org/10.2961/jlmn.2010.01.0016
[20] J. Li, Y. Liu, X. Xie, P. Zhang, B. Liang, L. Yan, J. Zhou, G.
Kurizki, D. Jacobs, K.S. Wong, and Y. Zhong, Fabrication of photonic
crystals with functional defects by one-step holographic lithography,
Opt. Express
16(17),
12899–12904 (2008),
http://dx.doi.org/10.1364/OE.16.012899
[21] G.P. Wang, C. Tan, Y. Yi, and H. Shan, Holography for one-step
fabrication of three-dimensional metallodielectric photonic crystals
with a single continuous wavelength laser beam, J. Mod. Opt.
50(14), 2155–2161 (2003),
http://dx.doi.org/10.1080/09500340308234567
[22] A.A. Maznev, T.F. Crimmins, and K.A. Nelson, How to make
femtosecond pulses overlap, Opt. Lett.
23(17),
1378–1380 (1998),
http://dx.doi.org/10.1364/OL.23.001378
[23] S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional
structuring of resists and resins by direct laser writing and
holographic recording, in:
Photoresponsive
Polymers I, eds. S. Marder and K.-S. Lee (Springer, Berlin,
Heidelberg, 2008) pp. 157–206,
http://dx.doi.org/10.1007/12_2007_122
[24] Y. Nakata, T. Okada, and M. Maeda, Lines of periodic hole
structures produced by laser ablation using interfering femtosecond
lasers split by a transmission grating, Appl. Phys. A
77(3), 399–401 (2003),
http://dx.doi.org/10.1007/s00339-003-2078-8
[25] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I.
Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C.
Fotakis, Ultralow shrinkage hybrid photosensitive material for
two-photon polymerization microfabrication, ACS Nano
2(11), 2257–2262 (2008),
http://dx.doi.org/10.1021/nn800451w
[26] M. Oubaha, R. Copperwhite, C. Boothman, A. Ovsianikov, R. Kiyan,
V. Purlys, M. O’Sullivan, C. McDonagh, B. Chichkov, R. Gadonas, and B.
MacCraith, Influence of hybrid organic–inorganic sol–gel matrices on
the photophysics of amino-functionalized UV-sensitizers, J. Mater. Sci.
46(2), 400–408 (2011),
http://dx.doi.org/10.1007/s10853-010-4853-1
[27] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G.
Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas,
Fabrication of micro-tube arrays in photopolymer SZ2080 by using three
different methods of a direct laser polymerization technique, J.
Micromech. Microeng.
22(6),
065022 (2012),
http://dx.doi.org/10.1088/0960-1317/22/6/065022
[28] E. Stankevicius, M. Malinauskas, M. Gedvilas, B. Voisiat, and G.
Raciukaitis, Fabrication of periodic micro-structures by multi-photon
polymerization using the femtosecond laser and four-beam interference,
Mater. Sci. (Medžiagotyra)
17(3),
244–248 (2011),
http://www.ktu.lt/lt/mokslas/zurnalai/medz/medz0-106/05%20Polymers...%28pp.244-248%29.pdf
[29] M. Malinauskas, G. Bickauskaite, M. Rutkauskas, D. Paipulas, V.
Purlys, and R. Gadonas, Self-polymerization of nano-fibres and
nano-membranes induced by two-photon absorption, Lith. J. Phys.
50(1), 135–140 (2010),
http://dx.doi.org/10.3952/lithjphys.50115
[30] S. Wu, J. Serbin, and M. Gu, Two-photon polymerisation for
three-dimensional micro-fabrication, J. Photochem. Photobiol. A
181(1), 1–11 (2006),
http://dx.doi.org/10.1016/j.jphotochem.2006.03.004
[31] B. Voisiat, M. Gedvilas, S. Indrisiunas, and G. Raciukaitis,
Flexible microstructuring of thin films using multi-beam interference
ablation with ultrashort lasers, J. Laser Micro/Nanoeng.
6(3), 185–190 (2011),
http://dx.doi.org/10.2961/jlmn.2011.03.0002
[32] K.M. Baker, Highly corrected submicrometer grid patterning on
curved surfaces, Appl. Opt.
38(2),
339–351 (1999),
http://dx.doi.org/10.1364/AO.38.000339
[33] T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa,
Multiphoton fabrication of periodic structures by multibeam
interference of femtosecond pulses, Appl. Phys. Lett.
82(17), 2758–2760 (2003),
http://dx.doi.org/10.1063/1.1569987
[34] S. Juodkazis, V. Mizeikis, and H. Misawa, Three-dimensional
microfabrication of materials by femtosecond lasers for photonics
applications, J. Appl. Phys.
106(5),
051101-14 (2009),
http://dx.doi.org/10.1063/1.3216462