E. Gaubas, D. Bajarūnas, T. Čeponis, D. Meškauskaitė, and J. Pavlov
Identification of the prevailing
radiation defects of large density remains a considerable issue for
particle detectors made of high resistivity Si. To clarify the dominant
radiation induced traps within CERN standard Si pad detectors, the
capacitance (C-) and current (I-) deep level transient spectroscopy
(DLTS) techniques have been combined. Additionally, the optical (O-)
injection I-DLTS regime has been employed to cover a wide range of
neutron irradiation fluences of 1012–1016 cm–2.
The spectra of C-DLTS and O-I-DLTS have been recorded using the
temperature scans in the range of 20–300 K. The radiation induced
vacancy (V) attributed defects such as V-O, V2, and clusters
have been identified, the density of which increases with irradiation
fluence in the range of 1012–1014 cm–2,
while this density saturates for the collected neutron fluence of more
than 1014 cm–2.
Darbe analizuotos giliosios
krūvininkų gaudyklės, susiformavusios CERN standarto Si detektoriuose
po apšvitos greitaisiais neutronais varijuojant įtėkį 1012–1016
cm–2 intervale. Giliųjų lygmenų parametrai įvertinti
pasitelkus giliųjų lygmenų talpinį (C-DLTS) ir giliųjų lygmenų optiškai
žadinamos generacinės srovės (O-I-DLTS) temperatūrinės žvalgos metodus.
C-DLTS ir O-I-DLTS spektruose identifikuoti radiaciniai defektai.
Paaiškėjo, kad didelių įtėkių srityje vyrauja apšvita sukurtos
divakansijos ir sankaupiniai defektų kompleksai. Aptikta, jog
generacinių centrų tankio augimas įsisotina ties 1014 n/cm–2.
References
/ Nuorodos
[1] G. Lindstrom, I. Dolenc, E. Fretwurst, F. Honniger, G. Kramberger,
M. Moll, E. Nossarzewska, I. Pintilie, and R. Roder, Epitaxial silicon
detectors for particle tracking, – radiation tolerance at extreme
hadron fluence, Nucl. Instrum. Methods A
568, 66–71 (2006),
http://dx.doi.org/10.1016/j.nima.2006.05.203
[2] I. Pintilie, E. Fretwurst, and G. Lindstrom, Cluster related hole
traps with enhanced-field-emission the source for long term annealing
in hadron irradiated Si diodes, Appl. Phys. Lett.
92, 024101 (2008),
http://dx.doi.org/10.1063/1.2832646
[3] D.V. Lang, Deep-level transient spectroscopy: a new method to
characterize traps in semiconductors, J. Appl. Phys.
45, 3023 (1974),
http://dx.doi.org/10.1063/1.1663719
[4] P. Blood and J.W. Orton,
The
Electrical Characterization of Semiconductors: Majority Carriers and
Electron States (Academic Press Inc., San Diego, 1992),
http://www.amazon.com/The-Electrical-Characterization-Semiconductors-Techniques/dp/0125286279
[5] A.U. Pandey, P. Middelkamp, Z. Li, and V. Eremin, New experimental
and analysis methods in I-DLTS, Nucl. Instrum. Methods A
426, 109–113 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01542-3
[6] Z. Li, Systematic modelling and comparisons of capacitance and
current-based microscopic defect analysis techniques for measurements
of highresistivity silicon detectors after irradiation, Nucl. Instrum.
Methods A
403, 399–416,
(1998),
http://dx.doi.org/10.1016/S0168-9002(97)01099-1
[7] E. Gaubas, T. Ceponis, J. Pavlov, A. Velička, and V. Kalesinskas,
Spectroscopy of radiation traps by techniques of temperature dependent
photoconductivity and generation currents in neutron irradiated Si,
submitted to Lith. J. Phys.
[8] K. Gill, G. Hall, and B. MacEvoy, Bulk damage effects in irradiated
silicon detectors due to clustered vacancies, J. Appl. Phys.
82, 126–136 (1997),
http://dx.doi.org/10.1063/1.365790
[9] S. Yang, Y. Li, Q. Ma, L. Liu, X. Xu, P. Niu, Y. Li, S. Niu, and H.
Li, Infrared absorption spectrum studies of the VO defect in
fast-neutron-irradiated Czochralski silicon, J. Cryst. Growth
280, 60–65 (2005),
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.046
[10] E. Gaubas, A. Uleckas, J.M. Rafi, J. Chen, D. Yang, and J.
Vanhellemont, Study of irradiation induced changes of electrical and
functional characteristics in Ge doped Si diodes, Physica B
407, 2998 (2012),
http://dx.doi.org/10.1016/j.physb.2011.08.056
[11] M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, Relation
between microscopic defects and macroscopic changes in silicon detector
properties after hadron irradiation, Nucl. Instrum. Methods B
186, 100–110 (2002),
http://dx.doi.org/10.1016/S0168-583X(01)00866-7
[12] J.L. Lindstrom, L.I. Murin, B.G. Svensson, V.P. Markevich, and T.
Hallberg, The VO
2* defect in silicon, Physica B
340–342, 509–513 (2003),
http://dx.doi.org/10.1016/j.physb.2003.09.146
[13] L.I. Murin, B.G. Svensson, J.L. Lindstrom, V.P. Markevich, and
C.A. Londos, Trivacancy-oxygen complex in silicon: local vibrational
mode characterization, Physica B
404,
4568–4571 (2009),
http://dx.doi.org/10.1016/j.physb.2009.08.144
[14] V. Eremin, A. Ivanov, E. Verbitskaya, Z. Li, and S.U. Pandey,
Analysis of divacancy related traps induced by proton, neutron and
gamma radiation in high resistivity silicon detectors, Nucl. Instrum.
Methods A
426, 120–125 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01479-X
[15] M. Huhtinen, Simulation of non-ionizing energy loss and defect
formation in silicon, Nucl. Instrum. Methods A
491, 194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5