[PDF]    http://dx.doi.org/10.3952/lithjphys.53407

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 215218 (2013)


OPTICALLY INDUCED CURRENT DEEP LEVEL SPECTROSCOPY OF RADIATION DEFECTS IN NEUTRON IRRADIATED Si PAD DETECTORS
E. Gaubas, D. Bajarūnas, T. Čeponis, D. Meškauskaitė, and J. Pavlov
Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: eugenijus.gaubas@ff.vu.lt

Received 6 August 2013; accepted 4 December 2013

Identification of the prevailing radiation defects of large density remains a considerable issue for particle detectors made of high resistivity Si. To clarify the dominant radiation induced traps within CERN standard Si pad detectors, the capacitance (C-) and current (I-) deep level transient spectroscopy (DLTS) techniques have been combined. Additionally, the optical (O-) injection I-DLTS regime has been employed to cover a wide range of neutron irradiation fluences of 1012–1016 cm–2. The spectra of C-DLTS and O-I-DLTS have been recorded using the temperature scans in the range of 20–300 K. The radiation induced vacancy (V) attributed defects such as V-O, V2, and clusters have been identified, the density of which increases with irradiation fluence in the range of 1012–1014 cm–2, while this density saturates for the collected neutron fluence of more than 1014 cm–2.
Keywords: C-DLTS, I-DLTS, O-I-DLTS, Si particle detectors, neutron irradiation
PACS: 72.40.+w, 29.40.-n, 78.60.-b


NEUTRONAIS APŠVITINTŲ Si DETEKTORIŲ RADIACINIŲ DEFEKTŲ GILIŲJŲ LYGMENŲ OPTIŠKAI ŽADINAMOS SROVĖS SPEKTROSKOPIJA
E. Gaubas, D. Bajarūnas, T. Čeponis, D. Meškauskaitė, J. Pavlov
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva

Darbe analizuotos giliosios krūvininkų gaudyklės, susiformavusios CERN standarto Si detektoriuose po apšvitos greitaisiais neutronais varijuojant įtėkį 1012–1016 cm–2 intervale. Giliųjų lygmenų parametrai įvertinti pasitelkus giliųjų lygmenų talpinį (C-DLTS) ir giliųjų lygmenų optiškai žadinamos generacinės srovės (O-I-DLTS) temperatūrinės žvalgos metodus. C-DLTS ir O-I-DLTS spektruose identifikuoti radiaciniai defektai. Paaiškėjo, kad didelių įtėkių srityje vyrauja apšvita sukurtos divakansijos ir sankaupiniai defektų kompleksai. Aptikta, jog generacinių centrų tankio augimas įsisotina ties 1014 n/cm–2.


References / Nuorodos

[1] G. Lindstrom, I. Dolenc, E. Fretwurst, F. Honniger, G. Kramberger, M. Moll, E. Nossarzewska, I. Pintilie, and R. Roder, Epitaxial silicon detectors for particle tracking, – radiation tolerance at extreme hadron fluence, Nucl. Instrum. Methods A 568, 66–71 (2006),
http://dx.doi.org/10.1016/j.nima.2006.05.203
[2] I. Pintilie, E. Fretwurst, and G. Lindstrom, Cluster related hole traps with enhanced-field-emission the source for long term annealing in hadron irradiated Si diodes, Appl. Phys. Lett. 92, 024101 (2008),
http://dx.doi.org/10.1063/1.2832646
[3] D.V. Lang, Deep-level transient spectroscopy: a new method to characterize traps in semiconductors, J. Appl. Phys. 45, 3023 (1974),
http://dx.doi.org/10.1063/1.1663719
[4] P. Blood and J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press Inc., San Diego, 1992),
http://www.amazon.com/The-Electrical-Characterization-Semiconductors-Techniques/dp/0125286279
[5] A.U. Pandey, P. Middelkamp, Z. Li, and V. Eremin, New experimental and analysis methods in I-DLTS, Nucl. Instrum. Methods A 426, 109–113 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01542-3
[6] Z. Li, Systematic modelling and comparisons of capacitance and current-based microscopic defect analysis techniques for measurements of highresistivity silicon detectors after irradiation, Nucl. Instrum. Methods A 403, 399–416, (1998),
http://dx.doi.org/10.1016/S0168-9002(97)01099-1
[7] E. Gaubas, T. Ceponis, J. Pavlov, A. Velička, and V. Kalesinskas, Spectroscopy of radiation traps by techniques of temperature dependent photoconductivity and generation currents in neutron irradiated Si, submitted to Lith. J. Phys.
[8] K. Gill, G. Hall, and B. MacEvoy, Bulk damage effects in irradiated silicon detectors due to clustered vacancies, J. Appl. Phys. 82, 126–136 (1997),
http://dx.doi.org/10.1063/1.365790
[9] S. Yang, Y. Li, Q. Ma, L. Liu, X. Xu, P. Niu, Y. Li, S. Niu, and H. Li, Infrared absorption spectrum studies of the VO defect in fast-neutron-irradiated Czochralski silicon, J. Cryst. Growth 280, 60–65 (2005),
http://dx.doi.org/10.1016/j.jcrysgro.2005.03.046
[10] E. Gaubas, A. Uleckas, J.M. Rafi, J. Chen, D. Yang, and J. Vanhellemont, Study of irradiation induced changes of electrical and functional characteristics in Ge doped Si diodes, Physica B 407, 2998 (2012),
http://dx.doi.org/10.1016/j.physb.2011.08.056
[11] M. Moll, E. Fretwurst, M. Kuhnke, and G. Lindstrom, Relation between microscopic defects and macroscopic changes in silicon detector properties after hadron irradiation, Nucl. Instrum. Methods B 186, 100–110 (2002),
http://dx.doi.org/10.1016/S0168-583X(01)00866-7
[12] J.L. Lindstrom, L.I. Murin, B.G. Svensson, V.P. Markevich, and T. Hallberg, The VO2* defect in silicon, Physica B 340–342, 509–513 (2003),
http://dx.doi.org/10.1016/j.physb.2003.09.146
[13] L.I. Murin, B.G. Svensson, J.L. Lindstrom, V.P. Markevich, and C.A. Londos, Trivacancy-oxygen complex in silicon: local vibrational mode characterization, Physica B 404, 4568–4571 (2009),
http://dx.doi.org/10.1016/j.physb.2009.08.144
[14] V. Eremin, A. Ivanov, E. Verbitskaya, Z. Li, and S.U. Pandey, Analysis of divacancy related traps induced by proton, neutron and gamma radiation in high resistivity silicon detectors, Nucl. Instrum. Methods A 426, 120–125 (1999),
http://dx.doi.org/10.1016/S0168-9002(98)01479-X
[15] M. Huhtinen, Simulation of non-ionizing energy loss and defect formation in silicon, Nucl. Instrum. Methods A 491, 194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5