[PDF]    http://dx.doi.org/10.3952/lithjphys.54107

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 2932 (2014)


ANALYSIS OF p-n JUNCTION BOUNDARY CONDITIONS AT HIGH-LEVEL INJECTION OF MINORITY CARRIERS
A. Baškys
Faculty of Electronics, Vilnius Gediminas Technical University, Naugarduko 41, LT-03227 Vilnius, Lithuania
E-mail: algirdas.baskys@vgtu.lt

Received 18 November 2013; accepted 4 December 2013

The equations of boundary conditions of the junction, which can be an alternative to the commonly used exponential equations, are proposed. The derived equations take into account the main event that arises at the high-level injection – dependence of majority carrier boundary concentrations on voltage drop across the depletion region that is essential for the p-n junctions of the present-day semiconductor devices, but is not reflected in the exponential equations of boundary conditions.
Keywords: p-n junction, boundary conditions, high-level injection, analytic model, electronic circuits simulation
PACS: 85.30.De, 85.30.Kk


p-n SANDŪROS KRAŠTINIŲ SĄLYGŲ ANALIZĖ DIDELĖS ŠALUTINIŲ KRŪVININKŲ INJEKCIJOS REŽIME
A. Baškys
Vilniaus Gedimino technikos universitetas, Elektronikos fakultetas, Vilnius, Lietuva

Pasiūlytos p-n sandūros ribinių sąlygų išraiškos, kurios yra alternatyva plačiai naudojamoms eksponentinėms išraiškoms. Įvertintas pagrindinis reiškinys, pasireiškiantis esant aukštai šalutinių krūvininkų injekcijai – pagrindinių krūvininkų tankio priklausomybė nuo įtampos kritimo nuskurdintame sluoksnyje. Tai aktualu šiuolaikinių puslaidininkinių prietaisų sandūroms, tačiau nėra įvertinama eksponentinėse sandūros ribinių sąlygų išraiškose. Pasiūlytos išraiškos gali būti pritaikytos kuriant naujus analitinius puslaidininkinių prietaisų elektrinius modelius elektroninių schemų modeliavimui.

References / Nuorodos

[1] M. Schroter, S. Lehmann, S. Fregonese, and T. Zimmer, A computationally efficient physics-based compact bipolar transistor model for circuit design – part I: model formulation, IEEE Trans. Electron Dev. 53(2), 279–286 (2006),
http://dx.doi.org/10.1109/TED.2005.862241
 
[2] S. Fregonese, S. Lehmann, T. Zimmer, M. Schroter, D. Celi, B. Ardouin, H. Beckrich, P. Brenner, and W. Kraus, A computationally efficient physicsbased compact bipolar transistor model for circuit design – part II: parameter extraction and experimental results, IEEE Trans. Electron Dev. 53(2), 287–295 (2006),
http://dx.doi.org/10.1109/TED.2005.862246
 
[3] G. Massobrio and P. Antognetti, Semiconductor Device Modeling with SPICE (McGraw-Hill, New York, 1998),
http://www.mhprofessional.com/product.php?isbn=0071349553#
 
[4] R.F. Pierret, Semiconductor Device Fundamentals (Addison-Wesley Publishing Company, New York, 1996),
http://www.pearsoned.co.uk/bookshop/detail.asp?item=168157
 
[5] M.N. Horenstein, Microelectronic Circuits and Devices (Prentice-Hall, Englewood Cliffs, 1996),
http://www.pearsonhighered.com/educator/product/Microelectronic-Circuit-and-Devices/9780137013357.page
 
[6] S. Štaras, Fundamentals of Electronics: Semiconductor Device Physics (Technika, Vilnius, 1999)
 
[7] H.R. Pota, A new derivation of the law of the junctions, IEEE Trans. Educ. 47(4), 497–499 (2004),
http://dx.doi.org/10.1109/TE.2004.832884
 
[8] T.T. Mnatskanov, D. Schroder, and A.E. Schlogl, Effect of high injection level phenomena on the feasibility of diffusive approximation in semiconductor device modeling, Solid State Electron. 42(1), 153–163 (1998),
http://dx.doi.org/10.1016/S0038-1101(97)00265-7
 
[9] R.S. Muller and T.I. Kamins, Device Electronics for Integrated Circuits (John Wiley and Sons, New York, 1986),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471593982.html
 
[10] A. Baskys, M. Sapurov, and R. Zubavicius, The new equations of p-n junction carrier injection level, Elektronika ir elektrotechnika (Electronics and Electrical Engineering) 19(2), 45–48 (2013),
http://dx.doi.org/10.5755/j01.eee.19.2.3467
 
[11] A. Baskys, L. Nickelson, and R. Navickas, Analytical method for differential amplifier offset voltage analysis, Elektronika ir elektrotechnika (Electronics and Electrical Engineering) 108(2), 51–54 (2011),
http://dx.doi.org/10.5755/j01.eee.108.2.144
 
[12] A. Baskys, R. Navickas, and C. Simkevicius, The fast differential amplifier-based integrated circuit yield analysis technique, Acta Phys. Pol. A 119(2), 259–261 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-52.html