ANALYSIS OF p-n JUNCTION BOUNDARY
CONDITIONS AT HIGH-LEVEL INJECTION OF MINORITY CARRIERS
A. Baškys
Faculty of Electronics, Vilnius Gediminas Technical University,
Naugarduko 41, LT-03227 Vilnius, Lithuania
E-mail: algirdas.baskys@vgtu.lt
Received 18 November 2013; accepted 4 December 2013
The equations of boundary conditions
of the junction, which can be an alternative to the commonly used
exponential equations, are proposed. The derived equations take into
account the main event that arises at the high-level injection –
dependence of majority carrier boundary concentrations on voltage drop
across the depletion region that is
essential for the p-n junctions of the present-day semiconductor
devices, but is not reflected in the exponential equations of boundary
conditions.
Keywords:
p-n junction, boundary conditions, high-level injection, analytic
model, electronic circuits simulation
PACS: 85.30.De, 85.30.Kk
p-n SANDŪROS KRAŠTINIŲ SĄLYGŲ
ANALIZĖ DIDELĖS ŠALUTINIŲ KRŪVININKŲ INJEKCIJOS REŽIME
A. Baškys
Vilniaus Gedimino technikos universitetas, Elektronikos fakultetas,
Vilnius, Lietuva
Pasiūlytos p-n sandūros ribinių
sąlygų išraiškos, kurios yra alternatyva plačiai naudojamoms
eksponentinėms išraiškoms. Įvertintas pagrindinis reiškinys,
pasireiškiantis esant aukštai šalutinių krūvininkų injekcijai –
pagrindinių krūvininkų tankio priklausomybė nuo įtampos kritimo
nuskurdintame sluoksnyje. Tai aktualu šiuolaikinių puslaidininkinių
prietaisų sandūroms, tačiau nėra įvertinama eksponentinėse sandūros
ribinių sąlygų išraiškose. Pasiūlytos išraiškos gali būti pritaikytos
kuriant naujus analitinius puslaidininkinių prietaisų elektrinius
modelius elektroninių schemų
modeliavimui.
References
/ Nuorodos
[1] M. Schroter, S. Lehmann, S. Fregonese, and T. Zimmer, A
computationally efficient physics-based compact bipolar transistor
model for circuit design – part I: model formulation, IEEE Trans.
Electron Dev.
53(2), 279–286
(2006),
http://dx.doi.org/10.1109/TED.2005.862241
[2] S. Fregonese, S. Lehmann, T. Zimmer, M. Schroter, D. Celi, B.
Ardouin, H. Beckrich, P. Brenner, and W. Kraus, A computationally
efficient physicsbased compact bipolar transistor model for circuit
design – part II: parameter extraction and experimental results, IEEE
Trans. Electron Dev.
53(2),
287–295 (2006),
http://dx.doi.org/10.1109/TED.2005.862246
[3] G. Massobrio and P. Antognetti,
Semiconductor
Device Modeling with SPICE (McGraw-Hill, New York, 1998),
http://www.mhprofessional.com/product.php?isbn=0071349553#
[4] R.F. Pierret,
Semiconductor
Device Fundamentals (Addison-Wesley Publishing Company, New
York, 1996),
http://www.pearsoned.co.uk/bookshop/detail.asp?item=168157
[5] M.N. Horenstein,
Microelectronic
Circuits and Devices (Prentice-Hall, Englewood Cliffs, 1996),
http://www.pearsonhighered.com/educator/product/Microelectronic-Circuit-and-Devices/9780137013357.page
[6] S. Štaras,
Fundamentals of
Electronics: Semiconductor Device Physics (Technika, Vilnius,
1999)
[7] H.R. Pota, A new derivation of the law of the junctions, IEEE
Trans. Educ.
47(4), 497–499
(2004),
http://dx.doi.org/10.1109/TE.2004.832884
[8] T.T. Mnatskanov, D. Schroder, and A.E. Schlogl, Effect of high
injection level phenomena on the feasibility of diffusive approximation
in semiconductor device modeling, Solid State Electron.
42(1), 153–163 (1998),
http://dx.doi.org/10.1016/S0038-1101(97)00265-7
[9] R.S. Muller and T.I. Kamins,
Device
Electronics for Integrated Circuits (John Wiley and Sons, New
York, 1986),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471593982.html
[10] A. Baskys, M. Sapurov, and R. Zubavicius, The new equations of p-n
junction carrier injection level, Elektronika ir elektrotechnika
(Electronics and Electrical Engineering)
19(2), 45–48 (2013),
http://dx.doi.org/10.5755/j01.eee.19.2.3467
[11] A. Baskys, L. Nickelson, and R. Navickas, Analytical method for
differential amplifier offset voltage analysis, Elektronika ir
elektrotechnika (Electronics and Electrical Engineering)
108(2), 51–54 (2011),
http://dx.doi.org/10.5755/j01.eee.108.2.144
[12] A. Baskys, R. Navickas, and C. Simkevicius, The fast differential
amplifier-based integrated circuit yield analysis technique, Acta Phys.
Pol. A
119(2), 259–261 (2011),
http://przyrbwn.icm.edu.pl/APP/ABSTR/119/a119-2-52.html