ULTRAFAST CARRIER DYNAMICS IN GaAs
NANOWIRES
V.N. Trukhin
a,c, A.D. Buravlev
a,b, V. Dhaka
d
, G.E. Cirlin
a,b, I.A. Mustafin
a,c, M.A.
Kaliteevski
a,b, H. Lipsanen
d, and Yu.B.
Samsonenko
a,b
aIoffe Physical Technical Institute, Politekhnicheskaya
2, 194021 St. Petersburg, Russia
E-mail: valera.truchin@mail.ioffe.ru
bSt. Petersburg Academic University, Khlopina 8/3, 194021
St. Petersburg, Russia
cNRU ITMO, Kronverkskiy 49, 197101 St. Petersburg, Russia
dAalto University, Lämpömiehenkuja 2, 02150 Espoo, Finland
Received 18 November 2013; accepted 4 December 2013
The results of investigation of electronic
transport in GaAs nanowires (NWs), which were grown by MBE and MOCVD on
n-type GaAs(111) substrates are presented. The time-resolved dynamics
of photocarriers were studied by optical-pump terahertz
generation-probe time-domain spectroscopy. The dynamics of THz
generation for different levels of excitation for the GaAs NWs grown by
MBE can be explained by separation of photoinduced carriers in the
contact field with subsequent screening of the contact field and with
non-saturable carrier recombination. The dynamics of THz generation for
the GaAs NWs grown by MOCVD is due to the growth of the mobility of
carriers as they are being grabbed to the non-radiative centres and as
a
consequence of carrier retrapping. The shift of THz pulse is connected
with
the changes of a phase in transmission and reflection THz pulse through
the
border between the absorbing and non-absorbing medium.
Keywords:
THz, nanowires, electronic transport, non-radiative centres
PACS: 78.67.Uh, 71.55.Eq,
72.20.-I, 72.20.Jv
LABAI SPARTI KRŪVININKŲ DINAMIKA
GaAs NANOGIJOSE
V.N. Trukhina,c, A.D. Buravleva,b, V. Dhaka d
, G.E. Cirlina,b, I.A. Mustafina,c, M.A.
Kaliteevski a,b, H. Lipsanend, Yu.B. Samsonenko
a,b
aJofės fizikos technikos institutas, Sankt Peterburgas,
Rusija
bSankt Peterburgo akademinis universitetas, Sankt
Peterburgas, Rusija
cSankt Peterburgo valstybinis informacinių technologijų,
mechanikos ir optikos universitetas, Sankt Peterburgas, Rusija
dAalto universitetas, Espas, Suomija
References
/ Nuorodos
[1] S.O. Kognovitskii, V.V. Travnikov, Ya. Aaviksoo, and I. Reimand,
Phys. Solid State
39, 907–912
(1997),
http://dx.doi.org/10.1134/1.1130000
[2] M. B. Johnston, D.M. Whittaker, A. Corchia, A.G. Davies, and E.H.
Linfield, Phys. Rev. B
65,
165301–165308 (2002),
http://dx.doi.org/10.1103/PhysRevB.65.165301
[3] P. Parkinson, J. Lloyd-Hughes, Q. Gao, H.H. Tan, C. Jagadish, M.B.
Johnston, and L.M. Herz, Nano Lett.
7,
2162–2165 (2007),
http://dx.doi.org/10.1021/nl071162x
[4] V.N. Truchin, A.V. Andrianov, N.N. Zinov'ev, Phys. Rev. B
78, 155325–155336 (2008),
http://dx.doi.org/10.1103/PhysRevB.78.155325
[5] A. Katzenmeyer, F. Leonard, A. Talin, P.-S. Wong, and D. Huffaker,
Nano Lett.
10, 4935–4938
(2010),
http://dx.doi.org/10.1021/nl102958g