[PDF]     http://dx.doi.org/10.3952/lithjphys.54111

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 4649 (2014)


IMPURITY-RELATED TERAHERTZ EMISSION FROM QUANTUM WELL NANOSTRUCTURES
D.A. Firsova, L.E. Vorobjeva, V.Yu. Panevina , A.N. Sofronova, R.M. Balagulaa, and D.V. Kozlov b
aSt. Petersburg State Polytechnical University, Politechnicheskaya 29, 195251 St. Petersburg, Russia
E-mail: dmfir@rphf.spbstu.ru
bInstitute for Physics of Microstructures, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia

Received 18 November 2013; accepted 4 December 2013

Terahertz emission in GaAs/AlGaAs quantum well structures doped with shallow impurities was studied in conditions of interband optical excitation for n-doped structures and impurity breakdown in the lateral electric field for p-doped structures. Emission spectra were obtained. It was shown that the observed emission is related to optical transitions of charge carriers between impurity levels and to impurity-band transitions. The depopulation of the final states under interband optical pumping was realized with recombination of non-equilibrium holes and electrons localized at neutral donors.
Keywords: terahertz emission, impurity, quantum wells, optical excitation, impurity breakdown, GaAs/AlGaAs
PACS: 78.55.Cr , 78.60.Fi, 78.67.De, 78.70.Gq


PRIEMAIŠŲ NULEMTA TERAHERCINĖ EMISIJA IŠ KVANTINIŲ ŠULINIŲ
NANODARINIŲ

D.A. Firsova, L.E. Vorobjeva, V.Yu. Panevina , A.N. Sofronova, R.M. Balagulaa, D.V. Kozlov b
aSankt Peterburgo valstybinis politechnikos universitetas, Sankt Peterburgas, Rusija
bRusijos mokslų akademijos Fizikos mikrostruktūros institutas, Nižnij Novgorodas, Rusija

References / Nuorodos

[1] P.-C. Lv, R.T. Troeger, T.N. Adam, S. Kim, J. Kolodzey, I.N. Yassievich, M.A. Odnoblyudov, and M.S. Kagan, Appl. Phys. Lett. 85(1), 22–24 (2004),
http://dx.doi.org/10.1063/1.1769589

[2] S.G. Pavlov, R.Kh. Zhukavin, E.E. Orlova, V.N. Shastin, A.V. Kirsanov, H.-W. Hübers, K. Auen, and H. Riemann, Phys. Rev. Lett. 84(22), 5220–5223 (2000),
http://dx.doi.org/10.1103/PhysRevLett.84.5220

[3] A.V. Andrianov, A.O. Zakhar’in, Yu.L. Ivanov, and M.S. Kipa, JETP Lett. 91(2), 96–99 (2010),
http://dx.doi.org/10.1134/S0021364010020098

[4] D.A. Firsov, V.A. Shalygin, V.Yu. Panevin, G.A. Melentyev, A.N. Sofronov, L.E. Vorobjev, A.V. Andrianov, A.O. Zakhar’in, V.S. Mikhrin, A.P. Vasil’ev, A.E. Zhukov, L.V. Gavrilenko, V.I. Gavrilenko, A.V. Antonov, and V.Ya. Aleshkin, Semiconductors 44(11), 1394–1397 (2010),
http://dx.doi.org/10.1134/S1063782610110023

[5] R.A. Lewis, T.S. Cheng, M. Henini, and J.M. Chamberlain, Phys. Rev. B 53(19), 12829–12834 (1996),
http://dx.doi.org/ 10.1103/PhysRevB.53.12829

[6] V.A. Shalygin, L.E. Vorobjev, D.A. Firsov, V.Yu. Panevin, A.N. Sofronov, A.V. Andrianov, A.O. Zakhar’in, A.Yu. Egorov, A.G. Gladyshev, O.V. Bondarenko, V.M. Ustinov, N.N. Zinov’ev, and D.V. Kozlov, Appl. Phys. Lett. 90 (16), 161128(1–3) (2007),
http://dx.doi.org/10.1063/1.2730745