[PDF]    http://dx.doi.org/10.3952/lithjphys.54201

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 6779 (2014)


METHODS, ALGORITHMS, AND COMPUTER CODES
FOR CALCULATION OF ELECTRON-IMPACT EXCITATION PARAMETERS

P. Bogdanovich, R. Kisielius, and D. Stonys
Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: pavelas.bogdanovicius@tfai.vu.lt

Received 20 December 2013; revised 13 March 2014; accepted 29 May 2014

We describe the computer codes, developed at Vilnius University, for the calculation of electron-impact excitation cross sections, collision strengths, and excitation rates in the plane-wave Born approximation. These codes utilize the multireference atomic wavefunctions which are also adopted to calculate radiative transition parameters of complex many-electron ions. This leads to consistent data sets suitable in plasma modelling codes. Two versions of electron scattering codes are considered in the present work, both of them employing configuration interaction method for inclusion of correlation effects and Breit-Pauli approximation to account for relativistic effects. These versions difer only by one-electron radial orbitals, where the first one employs the nonrelativistic numerical radial orbitals, while the other version uses the quasirelativistic radial orbitals. The accuracy of produced results is assessed by comparing radiative transition and electron-impact excitation data for neutral hydrogen, helium, and lithium atoms as well as highly charged tungsten ions with theoretical and experimental data available from other sources.
Keywords:
electron impact, excitation, many-electron ions
PACS: 31.15.ag, 34.80.Dp, 95.30.Ky

METODAI , ALGORITMAI IR KOMPIUTERINĖS PROGRAMOS
ATOMŲ SUŽADINIMO ELEKTRONAIS PARAMETRAMS SKAIČIUOTI

P. Bogdanovičius, R. Kisielius, D. Stonys
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Aprašome Vilniaus universiteto Teorinės fizikos ir astronomijos instituto Atomo teorijos skyriuje sukurtas kompiuterines programas, skirtas skaičiuoti atomų ir jonų sužadinimo elektronų smūgiais skerspjūvius, smūgių stiprius ir sužadinimo greičius plokščiųjų bangų pirmajame Borno artinyje. Šios programos naudoja daugiakonfigūracines daugiatermes atomo bangines funkcijas; tos pačios banginės funkcijos yra pritaikomos sudėtingų daugiaelektronių jonų radiacinių šuolių parametrams (šuolių bangų ilgiams, šuolių osciliatorių stipriams, šuolių tikimybėms) skaičiuoti. Tokiu būdu įmanoma gauti patikimus duomenis, tinkamus plazmų modeliavimo programoms.
Šiame darbe tiriame dvi skirtingas elektronų sklaidos programas, tačiau jos abi naudoja konfigūracijų sąveikos metodą koreliaciniams efektams įskaityti bei Breito ir Paulio artinį, leidžiantį įvertinti reliatyvistinius efektus. Šios dvi programos skiriasi tik vienelektronėmis radialiosiomis orbitalėmis; pirmoji programa naudoja nereliatyvistines skaitines radialiąsias orbitales, o antroji – kvazireliatyvistines radialiąsias orbitales. Mūsų duomenų tikslumą įvertiname palygindami juos su kitų autorių neutralių vandenilio, helio ir ličio atomų bei daugiakrūvių volframo jonų radiacinių šuolių ir sužadinimo elektronų smūgiais teoriniais rezultatais bei eksperimentiniais duomenimis.

References / Nuorodos

[1] P. Bogdanovich, Multiconfiguration approach in the study of atomic spectra, Lith. J. Phys. 44(2), 135–153 (2004),
http://dx.doi.org/10.3952/lithjphys.44204

[2] P. Bogdanovich, Modern methods of multiconfiguration studies of many-electron highly charged ions, Nucl. Instrum. Methods B 235(1–4), 92–99 (2005),
http://dx.doi.org/10.1016/j.nimb.2005.03.152

[3] H.P. Summers, The ADAS User Manual, version 2.6 (2004),
http://www.adas.ac.uk

[4] A. Kramida, Yu. Ralchenko, J. Reader, and NIST ASD Team, NIST Atomic Spectra Database, version 5.1 (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2013),
http://physics.nist.gov/asd

[5] Y.-K. Kim, K.K. Irikura, M.E. Rudd, M.A. Ali, P.M. Stone, J. Chang, J.S. Coursey, R.A. Dragoset, A.R. Kishore, K.J. Olsen, A.M. Sansonetti, G.G. Wiersma, D.S. Zucker, and M.A. Zucker, Electron-impact Ionization Cross Section for Ionization and Excitation Database, version 3.0 (National Institute of Standards and Technology, Gaithersburg, MD, USA, 2004),
http://physics.nist.gov/ionxsec

[6] I. Bray and Yu. Ralchenko, The CCC Data Base (online) (2001),
http://atom.curtin.edu.au/CCC-WWW

[7] C.F. Fischer, M.R. Godefroid, and A. Hibbert, A program for performing angular integrations for transition operators, Comput. Phys. Commun. 64(3), 486–500 (1991),
http://dx.doi.org/10.1016/0010-4655(91)90140-G

[8] Handbook of Mathematical Functions, eds. M. Abramovitz and I.A. Stegun, Vol. 55 Applied Mathematics Series National Bureau of Standards, Gaithersburg, MD, USA, 1964 pp. 355–490

[9] G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers (New-York, Toronto, London: McGraw & Hill Book Company, Inc, 1961)

[10] P.M. Stone, Y.-K. Kim, and J.P. Desclaux, Electron-impact cross sections for dipole- and spin-allowed excitations of hydrogen, helium, and lithium, J. Res. Natl. Inst. Stand. Technol. 107(4), 327–338 (2002),
http://dx.doi.org/10.6028/jres.107.026

[11] Y.-K. Kim, Scaling of plane-wave Born cross sections for electron-impact excitation of neutral atoms, Phys. Rev. A 64(3), 032713 (2001),
http://dx.doi.org/10.1103/PhysRevA.64.032713

[12] A. Grafe, C.J. Sweeney, and T.W. Shyn, Measurement of absolute differential cross sections for the excitation of atomic hydrogen to its n = 2 level by electron impact, Phys. Rev. A 63(5), 052715 (2001),
http://dx.doi.org/10.1103/PhysRevA.63.052715

[13] P. Bogdanovich and R. Karpuškienė, Transformed radial orbitals with a variable parameter for the configuration interaction, Lith. J. Phys. 39(3), 193–208 (1999)

[14] P. Bogdanovich and R. Karpuškienė, Numerical methods of the preliminary evaluation of the role of admixed configurations in atomic calculations, Comput. Phys. Commun. 134(3), 321–334 (2001),
http://dx.doi.org/10.1016/S0010-4655(00)00214-9

[15] P. Bogdanovich, D. Majus, and T. Pakhomova, Investigation of accuracy of configuration interaction for the oxygen isoelectronic sequence, Phys. Scripta 74(5), 558–562 (2006),
http://dx.doi.org/10.1088/0031-8949/74/5/013

[16] P. Bogdanovich and O. Rancova, Quasirelativistic Hartree-Fock equations consistent with Breit-Pauli approach, Phys. Rev. A 74(5), 052501 (2006),
http://dx.doi.org/10.1103/PhysRevA.76.012507

[17] P. Bogdanovich and O. Rancova, Adjustment of the quasirelativistic equations for p electrons, Phys. Rev. A 76(1), 012507 (2007),
http://dx.doi.org/10.1103/PhysRevA.76.012507

[18] P. Bogdanovich and O. Rancova, Quasirelativistic approach for ab initio study of highly charged ions, Phys. Scripta 78(4), 045301 (2008),
http://dx.doi.org/10.1088/0031-8949/78/04/045301

[19] D.C. Morton, Q. Wu, and G.W.F. Drake, Energy levels for the stable isotopes of atomic helium (4He I and 3He I), Can. J. Phys. 84, 83–105 (2006),
http://dx.doi.org/10.1139/p06-009

[20] W.L. Wiese and J.R. Fuhr, Accurate atomic transition probabilities for hydrogen, helium, and lithium, J. Phys. Chem. Ref. Data 38(3), 565–720 (2009),
http://dx.doi.org/10.1063/1.3077727;
Erratum: J. Phys. Chem. Ref. Data 38(4), 1129 (2009),
http://dx.doi.org/10.1063/1.3254213

[21] H. Merabet, M. Bailey, R. Bruch, J. Hanni, S. Bliman, D.V. Fursa, I. Bray, K. Bartschat, H.C. Tseng, and C.D. Lin, Cross sections and collision dynamics of the excitation of (1snp) 1Po levels of helium, n = 2–5, by intermediate- and high-velocity electron, proton, and molecular-ion (H2+ and H3+) impact, Phys. Rev. A 64(1), 012712 (2001),
http://dx.doi.org/10.1103/PhysRevA.64.012712

[22] W.B. Westerveld, H.G.M. Heideman, and J. van Eck, Electron impact excitation of 1 1S → 2 1P and 1 1S → 3 1P of helium: excitation cross sections and polarisation fractions obtained from XUV radiation, J. Phys. B 12(1), 115–136 (1979),
http://dx.doi.org/10.1088/0022-3700/12/1/019

[23] D.E. Shemansky, D.T. Hall, J.M. Ajello, and B. Franklin, Vacuum ultraviolet studies of electron impact of helium excitation of He n 1Po Rydberg series and ionization-excitation of He+ nl Rydberg series, Astrophys. J. 296, 774–783 (1985),
http://dx.doi.org/10.1086/163494

[24] S. Trajmar, J.M. Ratliff, G. Csanak, and D.C. Cartwright, Proposed standard inelastic differential electron scattering cross sections; excitation of the 21P level in He, Z. Phys. D 22(2), 457–462 (1992),
http://dx.doi.org/10.1007/BF01426087

[25] F.J. de Heer, Critically Assessed Electron-impact Excitation Cross Sections for He (1 1S), International Nuclear Data Committee Report IDNC(NDS)–385 (Vienna, Austria, 1998),
https://www-nds.iaea.org/publications/indc/indc-nds-0385/

[26] L. Vuskovic, S. Trajmar, and D.F. Register, Electron impact cross sections for the 22P state excitation of lithium, J. Phys. B 15(15), 2517–2530 (1982),
http://dx.doi.org/10.1088/0022-3700/15/15/024

[27] D. Leep and A. Gallagher, Electron excitation of the lithium 6708Å resonance line, Phys. Rev. A 10(4), 1082–1090 (1974),
http://dx.doi.org/10.1103/PhysRevA.10.1082

[28] W. Williams, S. Trajmar, and D. Bozinis, Electron scattering from Li at 5.4, 10, 20 and 60 eV impact energies, J. Phys. B 9(9), 1529–1536 (1976),
http://dx.doi.org/10.1088/0022-3700/9/9/018

[29] J. Schweinzer, R. Brandenburg, I. Bray, R. Hoekstra, F. Aumayr, R.K. Janev, and H.P. Winter, Database for inelastic collisions of lithium atoms with electrons, protons, and multiply charged ions, At. Data Nucl. Data Tables 72(2), 239–273 (1999),
http://dx.doi.org/10.1006/adnd.1999.0815

[30] C.P. Ballance and D.C. Griffin, Electron-impact excitation of W44+ and W45+, J. Phys. B 40(2), 247–258 (2007),
http://dx.doi.org/10.1088/0953-4075/40/2/001