J. Vyšniauskas and J. Matukas
Received 26 July 2013; revised 13 October 2013; accepted 4
December 2013
References
/
Nuorodos
[1] H.J.
Prager, K.K.N. Chang, and S. Weisbrod, High-power,
high-efficiency silicon avalanche diodes at ultra high
frequencies, Proc. IEEE
55(4), 586–587 (1967),
http://dx.doi.org/10.1109/PROC.1967.5609
[2] D.F. Kostishack, UHF avalanche diode oscillator providing
400 watts peak power and 75 percent efficiency, Proc. IEEE
58(8),
1282–1283 (1970),
http://dx.doi.org/10.1109/PROC.1970.7905
[3] S.G. Liu, 2000-W-GHz complementary TRAPATT diodes, in:
International
Solid-State Circuits Conference: Digest of Technical Papers
(1973) pp. 124–125,
http://dx.doi.org/10.1109/ISSCC.1973.1155175
[4] S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, and S.N.
Tsyranov, Generation of powerful microwave voltage oscillations
in a diffused silicon diode, Semiconductors
47(5),
670–678 (2013),
http://dx.doi.org/10.1134/S1063782613050151
[5] R.L. Johnston, D.L. Scharfetter, and D.L. Bartelink,
High-efficiency oscillations in germanium avalanche diodes below
the transit-time frequency, Proc. IEEE
56(9), 1611–1613
(1968),
http://dx.doi.org/10.1109/PROC.1968.6672
[6] A.S. Clorfeine, R.J. Ikola, and L.S. Napoli, A theory for
the high-efficiency mode of oscillation in avalanche diodes, RCA
Review
30(3), 394–421 (1969)
[7] B.C. De Loach and D.L. Scharfetter, Device physics of
TRAPATT oscillators, IEEE Trans. Electron Devices
17(1),
9–21 (1970),
http://dx.doi.org/10.1109/T-ED.1970.16917
[8] R.S. Ying and N.B. Kramer, X-band silicon TRAPATT diodes,
Proc. IEEE
58(8), 1285–1286 (1970),
http://dx.doi.org/10.1109/PROC.1970.7907
[9] C.H. Oxley, A.M. Howard, and J.J. Purcell, X-band TRAPATT
amplifiers, Electron. Lett.
13(14), 416–417 (1977),
http://dx.doi.org/10.1049/el:19770303
[10] K.K.N. Chang, H. Kawamoto, H.J. Prager, J. Reynolds, A.
Rosen, and V.A. Milkinas, High-efficiency avalanche diodes
(TRAPATT) for phased-array radar systems, in:
International
Solid-State Circuits Conference: Digest of Technical Papers
(1973) pp. 122–123, 207,
http://dx.doi.org/10.1109/ISSCC.1973.1155197
[11] H. Kawamoto, Gigahertz-rate 100-V pulse generator, IEEE J.
Solid-State Circuits
8(1), 63–66 (1973),
http://dx.doi.org/10.1109/JSSC.1973.1050346
[12] F.K. Vaitiekūnas, J.B. Vyšniauskas, Š.A. Kamaldinov, M.J.
Filatov, and G.E. Šimėnas, Investigation of the pulse generator
external circuit with TRAPATT diode, Tekhnika Sredstv Svyazi,
Ser. Radioizmeritel’naya Tekhnika
35(1), 11–16 (1981)
[in Russian]
[13] J. Vyšniauskas,
Charge Generation and Transport in
TRAPATT Structures during the Generation of Nonsinusoidal
Oscillation, Doctoral Thesis (Vilnius University, Vilnius,
1985)
[14] R.A. Kiehl and R.E. Hibray, High-speed digital microwave
transmitter utilizing optical modulation, Proc. IEEE
66(6),
708–709 (1978),
http://dx.doi.org/10.1109/PROC.1978.10999
[15] H. Gottstein, Amplification and transformation of optical
signals with a TRAPATT diode, Int. J. Electron.
56(5),
663–668 (1984),
http://dx.doi.org/10.1080/00207218408938860
[16] G. Šimėnas,
Generation of Pulsed and Sinusoidal
Oscillation on Avalanche Diodes with Optical Generated
Carriers, Doctoral Thesis (Vilnius University, Vilnius,
1991)
[17] R. Jacob Baker, Time domain operation of the TRAPATT diode
for picosecond-kilovolt pulse generation, Rev. Sci. Instrum.
65(l0),
3286–3288 (1994),
http://dx.doi.org/10.1063/1.1144565
[18] V.A. Kozlov, A.F. Kardo-Sysoev, and V.I. Brylevskii, Impact
ionization wave breakdown of drift step recovery diodes,
Semiconductors
35(5), 608–611 (2001),
http://dx.doi.org/10.1134/1.1371631
[19] P. Rodin, U. Ebert, W. Hundsdorfer, and I.V. Grekhov,
Superfast fronts of impact ionization in initially unbiased
layered semiconductor structures, J. Appl. Phys.
92(4),
1971–1980 (2002),
http://dx.doi.org/10.1063/1.1494113
[20] P. Rodin and I. Grekhov, Dynamic avalanche breakdown of a
p-n junction: Deterministic triggering of a plane streamer
front, Appl. Phys. Lett.
86, 243504 (2005),
http://dx.doi.org/10.1063/1.1947915
[21] I.V. Grekhov and P.B. Rodin, Triggering of superfast
ionization fronts in silicon diode structures by field-enhanced
thermionic electron emission from deep centers, Tech. Phys.
Lett.
37(9), 849–853 (2011),
http://dx.doi.org/10.1134/S1063785011090203
[22] F.K. Vaitiekūnas, J.B. Vyšniauskas, and M.V. Meilūnas,
Influence of n
+n region steepness to plasma formation
and extraction processes in silicon TRAPATT diodes, Elektronnaya
Tekhnika, Ser. Elektronika SVCh
361(1), 34–37 (1984) [in
Russian]
[23] J. Vyšniauskas, V. Klimenko, J. Matukas, and V. Palenskis,
Simulation of electron diffusion effect on plasma formation in
silicon TRAPATT diodes, Lith. J. Phys.
52(3), 203–213
(2012)
http://dx.doi.org/10.3952/lithjphys.52312
[24] R.A. Kiehl, Dynamic minority-carrier storage in TRAPATT
diodes, Solid State Electron.
23(3), 217–222 (1980),
http://dx.doi.org/10.1016/0038-1101(80)90005-2
[25] F. Vaitiekunas and J. Vyshniauskas, Differences of plasma
formation and extraction in p
+nn
+ and n
+pp
+
silicon TRAPATT structures, Electron. Lett.
17(21),
822–824 (1981),
http://dx.doi.org/10.1049/el:19810573
[26] C.M. Lee, R.J. Lomax, and G.I. Haddad, Semiconductor device
simulation, IEEE Trans. Microw. Theor. Tech.
22(3),
160–177 (1974),
http://dx.doi.org/10.1109/TMTT.1974.1128198
[27] L.M. Degtyarev and A.P. Favorskii, Flow variant of sweep
method, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi
Fiziki [Comput. Math. Math. Phys., in Rusian]
8(3),
679–684 (1968)
[28] L.M. Degtyarev and A.P. Favorskii, Flow variant of sweep
method for difference tasks with strongly varying coefficients,
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki
[Comput. Math. Math. Phys., in Russian]
9(1), 211–218
(1969)