[PDF]    http://dx.doi.org/10.3952/lithjphys.54203

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 8993 (2014)


SPECTROSCOPY OF RADIATION TRAPS IN Si BY TEMPERATURE DEPENDENT PHOTOCONDUCTIVITY
AND GENERATION CURRENTS

E. Gaubas, T. Čeponis, J. Pavlov, A. Velička, and V. Kalesinskas
Institute of Applied Research, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: eugenijus.gaubas@ff.vu.lt

Received 31 July 2013; revised 14 October 2013; accepted 4 December 2013

An analysis of excess carrier decay transients has been performed on the reactor neutron irradiated Si n-type material grown by the magnetic field applied Czochralski (MCZ) technology, using the microwave-probed photoconductivity (MW-PC) transient technique. The measurements of temperature dependent excess carrier lifetime variations were carried out on the just irradiated and annealed samples in order to identify the prevailing radiation defects and to predict trap behaviour under thermal treatments. The activation energy of the dominant carrier traps has been extracted. Barrier capacitance and generation current variations in neutron irradiated MCZ Si pin diodes have been controlled employing the barrier evaluation by the linearly increasing voltage (BELIV) technique, as well.
Keywords: spectroscopy of carrier traps, photoconductivity transients, carrier lifetime, generation current
PACS: 72.40.+w, 29.40.-n, 78.60.-b


RADIACINIŲ GAUDYKLIŲ SILICYJE SPEKTROSKOPIJA PAGAL FOTOLAIDUMO
IR GENERACINĖS SROVĖS TEMPERATŪRINIUS KITIMUS

E. Gaubas, T. Čeponis, J. Pavlov, A. Velička, V. Kalesinskas
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva

Darbe ištirti Čochralskio būdu (MCZ) magnetiniame lauke išauginto ir neutronais apšvitinto Ф  ~ 1014 cm–2 įtėkiu n-laidumo Si padėklai bei šios Si medžiagos pagrindu pagaminti pin diodai. Tyrimai vykdyti pasitelkiant barjerinės talpos elektrinimo srovių ir mikrobangomis zonduojamo fotolaidumo kinetikų matavimo metodikas. Identifikuoti in situ barjerinės talpos ir generacinės srovės kitimus nulėmusieji radiaciniai defektai, sukurti Si diodiniuose dariniuose apšvitinus spalatoriaus neutronais. Nustatyta, kad barjerinės talpos elektrinimo srovės komponentė mažėja, o generacinės srovės nulemta komponentė auga didėjant neutronų įtėkiui. Analizuojant generacinės srovės ir krūvininkų gyvavimo trukmės temperatūrinius kitimus buvo įvertintos dominuojančių gaudyklių aktyvacijos energijos.

References / Nuorodos

[1] H. Spieler, Semiconductor Detector Systems (Oxford University Press, New York, 2005),
http://dx.doi.org/10.1093/acprof:oso/9780198527848.001.0001

[2] G. Lutz, Semiconductor Radiation Detectors – Device Physics (Springer, Heidelberg, 2007),
http://dx.doi.org/10.1007/978-3-540-71679-2

[3] E. Gaubas, T. Čeponis, and J. Vaitkus, Impact of generation current on evaluation of the depletion width in heavily irradiated Si detectors, J. Appl. Phys. 110, 033719 (2011),
http://dx.doi.org/10.1063/1.3619802

[4] E. Gaubas, T. Ceponis, A. Jasiunas, A. Uleckas, J. Vaitkus, E. Cortina, and O. Militaru, Correlated evolution of barrier capacitance charging, generation and drift currents and of carrier lifetime in Si structures during 25 MeV neutrons irradiation, Appl. Phys. Lett. 101, 232104:1-232104:3 (2012),
http://dx.doi.org/10.1063/1.4769370

[5] E. Gaubas, T. Ceponis, J. Kusakovskij, and A. Uleckas, Barrier evaluation by linearly increasing voltage technique applied to Si solar cells and irradiated pin diodes, ISRN Mater. Sci., Article ID 543790 (2012),
http://dx.doi.org/10.5402/2012/543790

[6] E. Gaubas, Transient absorption techniques for investigation of recombination properties in semiconductor materials, Lith. J. Phys. 43, 145–165 (2003)

[7] S. Vayrynen, P. Tikkanen, J. Raisanen, I. Kassamakov, and E. Tuominen, Effects of activation by proton irradiation on silicon particle detector electric characteristics, J. Appl. Phys. 106, 024908 (2009),
http://dx.doi.org/10.1063/1.3168436

[8] E. Gaubas, T. Čeponis, S. Sakalauskas, A. Uleckas, and A. Velička, Fluence dependent variations of barrier and generation currents in neutron and proton irradiated Si particle detector, Lith. J. Phys. 51, 230–236 (2011)
http://dx.doi.org/10.3952/lithjphys.51308

[9] S. Assouak, E. Forton, and G. Gregoire, Irradiations of CMS silicon sensors with fast neutrons, Nucl. Instrum. Methods A 514, 156 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.099

[10] M. Huhtinen, Simulation of non-ionizing energy loss and defect formation in silicon, Nucl. Instrum. Methods A 491, 194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5

[11] S.M. Ryvkin, Photoelectronic Effects in Semiconductors (Consulting Bureau, New York, 1964),
http://www.amazon.co.uk/Photoelectric-Effects-Semiconductors-S-Ryvkin/dp/B002B2BK22/