E. Gaubas, T. Čeponis, J. Pavlov, A. Velička, and V. Kalesinskas
Received 31 July 2013; revised 14 October 2013; accepted 4
December 2013
An analysis of excess carrier
decay transients has been performed on the reactor neutron
irradiated Si n-type material grown by the magnetic field
applied Czochralski (MCZ) technology, using the microwave-probed
photoconductivity (MW-PC) transient technique. The measurements
of temperature dependent excess carrier lifetime variations were
carried out on the just irradiated and annealed samples in order
to identify the prevailing radiation defects and to predict trap
behaviour under thermal treatments. The activation energy of the
dominant carrier traps has been extracted. Barrier capacitance
and generation current variations in neutron irradiated MCZ Si
pin diodes have been controlled employing the barrier evaluation
by the linearly increasing voltage (BELIV) technique, as well.
RADIACINIŲ GAUDYKLIŲ SILICYJE
SPEKTROSKOPIJA PAGAL FOTOLAIDUMO
IR GENERACINĖS SROVĖS TEMPERATŪRINIUS KITIMUS
E. Gaubas, T. Čeponis, J. Pavlov, A. Velička, V. Kalesinskas
Vilniaus universiteto Taikomųjų mokslų institutas, Vilnius,
Lietuva
Darbe ištirti Čochralskio būdu (MCZ)
magnetiniame lauke išauginto ir neutronais apšvitinto Ф
~ 1014 cm–2 įtėkiu n-laidumo Si
padėklai bei šios Si medžiagos pagrindu pagaminti pin diodai.
Tyrimai vykdyti pasitelkiant barjerinės talpos elektrinimo
srovių ir mikrobangomis zonduojamo fotolaidumo kinetikų
matavimo metodikas. Identifikuoti in situ barjerinės talpos ir
generacinės srovės kitimus nulėmusieji radiaciniai defektai,
sukurti Si diodiniuose dariniuose apšvitinus spalatoriaus
neutronais. Nustatyta, kad barjerinės talpos elektrinimo
srovės komponentė mažėja, o generacinės srovės nulemta
komponentė auga didėjant neutronų įtėkiui. Analizuojant
generacinės srovės ir krūvininkų gyvavimo trukmės
temperatūrinius kitimus buvo įvertintos dominuojančių
gaudyklių aktyvacijos energijos.
References
/
Nuorodos
[1] H. Spieler,
Semiconductor
Detector Systems (Oxford University Press, New York, 2005),
http://dx.doi.org/10.1093/acprof:oso/9780198527848.001.0001
[2] G. Lutz,
Semiconductor Radiation Detectors – Device
Physics (Springer, Heidelberg, 2007),
http://dx.doi.org/10.1007/978-3-540-71679-2
[3] E. Gaubas, T. Čeponis, and J. Vaitkus, Impact of generation
current on evaluation of the depletion width in heavily
irradiated Si detectors, J. Appl. Phys.
110, 033719
(2011),
http://dx.doi.org/10.1063/1.3619802
[4] E. Gaubas, T. Ceponis, A. Jasiunas, A. Uleckas, J. Vaitkus,
E. Cortina, and O. Militaru, Correlated evolution of barrier
capacitance charging, generation and drift currents and of
carrier lifetime in Si structures during 25 MeV neutrons
irradiation, Appl. Phys. Lett.
101, 232104:1-232104:3
(2012),
http://dx.doi.org/10.1063/1.4769370
[5] E. Gaubas, T. Ceponis, J. Kusakovskij, and A. Uleckas,
Barrier evaluation by linearly increasing voltage technique
applied to Si solar cells and irradiated pin diodes, ISRN Mater.
Sci., Article ID 543790 (2012),
http://dx.doi.org/10.5402/2012/543790
[6] E. Gaubas, Transient absorption techniques for investigation
of recombination properties in semiconductor materials, Lith. J.
Phys.
43, 145–165 (2003)
[7] S. Vayrynen, P. Tikkanen, J. Raisanen, I. Kassamakov, and E.
Tuominen, Effects of activation by proton irradiation on silicon
particle detector electric characteristics, J. Appl. Phys.
106,
024908 (2009),
http://dx.doi.org/10.1063/1.3168436
[8] E. Gaubas, T. Čeponis, S. Sakalauskas, A. Uleckas, and A.
Velička, Fluence dependent variations of barrier and generation
currents in neutron and proton irradiated Si particle detector,
Lith. J. Phys.
51, 230–236 (2011)
http://dx.doi.org/10.3952/lithjphys.51308
[9] S. Assouak, E. Forton, and G. Gregoire, Irradiations of CMS
silicon sensors with fast neutrons, Nucl. Instrum. Methods A
514,
156 (2003),
http://dx.doi.org/10.1016/j.nima.2003.08.099
[10] M. Huhtinen, Simulation of non-ionizing energy loss and
defect formation in silicon, Nucl. Instrum. Methods A
491,
194–215 (2002),
http://dx.doi.org/10.1016/S0168-9002(02)01227-5
[11] S.M. Ryvkin,
Photoelectronic Effects in Semiconductors
(Consulting Bureau, New York, 1964),