[PDF]     http://dx.doi.org/10.3952/lithjphys.54204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 9498 (2014)


HALL EFFECT AND MAGNETORESISTANCE INVESTIGATION OF FAST ELECTRON IRRADIATED SILICON
A. Mekysa, V. Rumbauskasa, J. Storastaa, L. Makarenkob, N. Kazuchitsb, and J.V. Vaitkusa
aInstitute of Materials Science and Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
bByelorussian State University, BY-240040 Minsk, Belarus
E-mail: algirdas.mekys@ff.vu.lt

Received 22 January 2014; revised 10 March 2014; accepted 29 May 2014

A set of n-type silicon samples has been irradiated by 6.6 MeV electrons with doses from 1 to 5 (× 1016) e/cm2, and temperature dependences of Hall and magnetoresistance mobilities were measured. The ratio of magnetoresistance and Hall mobilities was found equal to 1.15 ± 0.25. The correspondence of the data measured by both methods opened the possibility of measurement of electron mobility in semiconductors with microinhomogeneities by magnetoresistance effect investigation.
Keywords: magnetoresistivity, silicon, electron irradiation, mobility
PACS: 72.20.My, 72.20.Dp, 72.20.-i


GREITAISIAIS ELEKTRONAIS APŠVITINTO SILICIO HOLO REIŠKINIO IR MAGNETOVARŽOS TYRIMAI
A. Mekysa, V. Rumbauskasa, J. Storastaa, L. Makarenkob, N. Kazuchitsb, J.V. Vaitkusa
aVilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas, Vilnius, Lietuva
bBaltarusijos valstybinis universitetas, Minskas, Baltarusija

Darbe tyrinėti n-tipo silicio bandiniai, apšvitinti 6,6 MeV energijos elektronais, pasitelkiant Holo ir magnetovaržos reiškinius. Bandinių geometrija išskirtinai tinka Holo reiškiniui, tačiau norėta išsiaiškinti, ar prasmingus rezultatus galima gauti matuojant ir magnetovaržą. Ankstesniais tyrimais buvo nustatyta, kad Holo įtampos signalas ženkliai iškraipomas, kai medžiagoje yra stambesni nevienalytiškumai, pvz., atsiradę dėl švitinimo (iki 1016/cm2) greitaisiais neutronais, o magnetovaržos signalas išlieka panašus, kaip ir nešvitintų bandinių. Šiame darbe silicis buvo apšvitintas elektronais, kurie daugiausiai kuria taškinius defektus. Išmatuotos temperatūrinės judrio ir laidumo priklausomybės nuo 100 iki 300 K intervale parodė, kad nors ir nesilaikoma magnetovaržos matavimams keliamų bandinių geometrijos reikalavimų, galima atlikti pakankamai kokybišką krūvininkų judrio analizę.

References / Nuorodos

[1] M. Moll, J. Adey, and A. Al-Ajili, et al., Development of radiation tolerant semiconductor detectors for the Super-LHC, Nucl. Instrum. Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044

[2] V. Bartsch, W. de Boer, and J. Bol, et al., Lorentz angle measurements in silicon detectors, Nucl. Instrum. Methods A 478, 330 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01820-4

[3] P. Blood and J.W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States (Academic Press, 1992),
http://www.amazon.com/The-Electrical-Characterization-Semiconductors-Techniques/dp/0125286279

[4] R.H. Bube, Interpretation of Hall and photo-Hall effects in inhomogeneous materials, Appl. Phys. Lett. 13, 136 (1968),
http://dx.doi.org/10.1063/1.1652542

[5] J. Viščakas, K. Lipskis, and A. Sakalas, On the interpretation of Hall and thermoelectric effects in polycrystalline films, Lith. J. Phys. 11, 799 (1971)

[6] A. Medeišis and J. Viščakas, Determination of the physical parameters of polycrystalline materials from Hall and Seebeck effects, Lith. J. Phys. 15, 260 (1975)

[7] W. Siegel, S. Schulte, C. Reichel, G. Kuhnel, and J. Monecke, Anomalous temperature dependence of the Hall mobility in undoped bulk GaAs, J. Appl. Phys. 82, 3832 (1997),
http://dx.doi.org/10.1063/1.365747

[8] J. Vaitkus, A. Mekys, and J. Storasta, Analysis of microinhomogeneity of irradiated Si by Hall and magneto-resistance effects, in: 10th CERN-RD50 Workshop on Radiation Hard Semiconductor Devices for Very High Luminosity Colliders (Vilnius, 2007),
https://rd50.web.cern.ch/rd50/10th-workshop/default.htm

[9] A. Dargys and J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP (Science and Encyclopedia Publishers, Vilnius, 1994)

[10] R.S. Popovic, Hall Effect Devices (IOP Publishing Ltd, 2004),
http://dx.doi.org/10.1887/0750308559

[11] G. Lindström, et al., Radiation hard silicon detectors - developments by the RD48 (ROSE) collaboration, Nucl. Instrum. Methods A 466, 308 (2001) and references therein,
http://dx.doi.org/10.1016/S0168-9002(01)00560-5

[12] P. Ščajev, A. Mekys, P. Malinovskis, J. Storasta, M. Kato, and K. Jarašiūnas, Electrical parameters of bulk 3C-SiC crystals determined by Hall effect, magnetoresistivity, and contactless time-resolved optical techniques, Mater. Sci. Forum 679–680, 157 (2011),
http://dx.doi.org/10.4028/www.scientific.net/MSF.679-680.157

[13] R. Vasiliauskas, A. Mekys, P. Malinovskis, S. Juillaguet, M. Syvajarvi, J. Storasta, and R. Yakimova, Impact of extended defects on Hall and magnetoresistivity effects in cubic silicon carbide, J. Phys. D 45, 225102 (2012),
http://dx.doi.org/10.1088/0022-3727/45/22/225102

[14] B. Van Zeghbroeck, Principles of Electronic Devices, Chapter 2: Semiconductor Fundamentals (Online textbook) (2011),
http://ecee.colorado.edu/~bart/book/

[15] R.A. Baltramiejūnas, J.V. Vaitkus, V.V. Grivickas, and J.I. Storasta, Investigation of transient processes in the scattering of carriers and in the dependence of the mobility on the excitation conditions by the method of the pulsed Hall photoeffect, Lith. J. Phys. 18, 231 (1978)