A. Mekys
, V. Rumbauskas
, J. Storasta
,
      L. Makarenko
, N. Kazuchits
      Received 22 January 2014; revised 10 March 2014; accepted 29 May
      2014
      
      
A set of n-type silicon samples
        has been irradiated by 6.6 MeV electrons with doses from 1 to 5
        (× 1016) e/cm2, and temperature
        dependences of Hall and magnetoresistance mobilities were
        measured. The ratio of magnetoresistance and Hall mobilities was
        found equal to 1.15 ± 0.25. The correspondence of the data
        measured by both methods opened the possibility of measurement
        of electron mobility in semiconductors with microinhomogeneities
        by magnetoresistance effect investigation.
      
      Darbe tyrinėti n-tipo silicio
        bandiniai, apšvitinti 6,6 MeV energijos elektronais,
        pasitelkiant Holo ir magnetovaržos reiškinius. Bandinių
        geometrija išskirtinai tinka Holo reiškiniui, tačiau norėta
        išsiaiškinti, ar prasmingus rezultatus galima gauti matuojant ir
        magnetovaržą. Ankstesniais tyrimais buvo nustatyta, kad Holo
        įtampos signalas ženkliai iškraipomas, kai medžiagoje yra
        stambesni nevienalytiškumai, pvz., atsiradę dėl švitinimo (iki
        1016/cm2) greitaisiais neutronais, o
        magnetovaržos signalas išlieka panašus, kaip ir nešvitintų
        bandinių. Šiame darbe silicis buvo apšvitintas elektronais,
        kurie daugiausiai kuria taškinius defektus. Išmatuotos
        temperatūrinės judrio ir laidumo priklausomybės nuo 100 iki 300
        K intervale parodė, kad nors ir nesilaikoma magnetovaržos
        matavimams keliamų bandinių geometrijos reikalavimų, galima
        atlikti pakankamai kokybišką krūvininkų judrio analizę.
      References
/
          Nuorodos
        
        [1] M. Moll, J. Adey,
        and A. Al-Ajili, et al., Development of radiation tolerant
        semiconductor detectors for the Super-LHC, Nucl. Instrum.
        Methods A 546, 99–107 (2005), 
        
          http://dx.doi.org/10.1016/j.nima.2005.03.044
        
        [2] V. Bartsch, W. de Boer, and J. Bol, et al., Lorentz angle
        measurements in silicon detectors, Nucl. Instrum. Methods A 478,
        330 (2002), 
        
          http://dx.doi.org/10.1016/S0168-9002(01)01820-4
        
        [3] P. Blood and J.W. Orton, 
The Electrical Characterization
          of Semiconductors: Majority Carriers and Electron States (Academic
        Press, 1992), 
        
http://www.amazon.com/The-Electrical-Characterization-Semiconductors-Techniques/dp/0125286279
        
        [4] R.H. Bube, Interpretation of Hall and photo-Hall effects in
        inhomogeneous materials, Appl. Phys. Lett. 13, 136 (1968), 
        
http://dx.doi.org/10.1063/1.1652542
        
        [5] J. Viščakas, K. Lipskis, and A. Sakalas, On the
        interpretation of Hall and thermoelectric effects in
        polycrystalline films, Lith. J. Phys. 
11, 799 (1971)
        
        [6] A. Medeišis and J. Viščakas, Determination of the physical
        parameters of polycrystalline materials from Hall and Seebeck
        effects, Lith. J. Phys. 
15, 260 (1975)
        
        [7] W. Siegel, S. Schulte, C. Reichel, G. Kuhnel, and J.
        Monecke, Anomalous temperature dependence of the Hall mobility
        in undoped bulk GaAs, J. Appl. Phys. 
82, 3832 (1997), 
        
          http://dx.doi.org/10.1063/1.365747
        
        [8] J. Vaitkus, A. Mekys, and J. Storasta, Analysis of
        microinhomogeneity of irradiated Si by Hall and
        magneto-resistance effects, in: 
10th CERN-RD50 Workshop on
          Radiation Hard Semiconductor Devices for Very High Luminosity
          Colliders (Vilnius, 2007), 
        
https://rd50.web.cern.ch/rd50/10th-workshop/default.htm
        
        [9] A. Dargys and J. Kundrotas, 
Handbook on Physical
          Properties of Ge, Si, GaAs and InP (Science and
        Encyclopedia Publishers, Vilnius, 1994)
        
        [10] R.S. Popovic, 
Hall Effect Devices (IOP Publishing
        Ltd, 2004), 
        
          http://dx.doi.org/10.1887/0750308559
        
        [11] G. Lindström, et al., Radiation hard silicon detectors -
        developments by the RD48 (ROSE) collaboration, Nucl. Instrum.
        Methods A 
466, 308 (2001) and references therein, 
        
          http://dx.doi.org/10.1016/S0168-9002(01)00560-5
        
        [12] P. Ščajev, A. Mekys, P. Malinovskis, J. Storasta, M. Kato,
        and K. Jarašiūnas, Electrical parameters of bulk 3C-SiC crystals
        determined by Hall effect, magnetoresistivity, and contactless
        time-resolved optical techniques, Mater. Sci. Forum 
679–680,
        157 (2011), 
        
http://dx.doi.org/10.4028/www.scientific.net/MSF.679-680.157
        
        [13] R. Vasiliauskas, A. Mekys, P. Malinovskis, S. Juillaguet,
        M. Syvajarvi, J. Storasta, and R. Yakimova, Impact of extended
        defects on Hall and magnetoresistivity effects in cubic silicon
        carbide, J. Phys. D 
45, 225102 (2012), 
        
          http://dx.doi.org/10.1088/0022-3727/45/22/225102
        
        [14] B. Van Zeghbroeck, 
Principles of Electronic Devices,
        Chapter 2: Semiconductor Fundamentals (Online textbook) (2011),
        
        
          http://ecee.colorado.edu/~bart/book/
        
        [15] R.A. Baltramiejūnas, J.V. Vaitkus, V.V. Grivickas, and J.I.
        Storasta, Investigation of transient processes in the scattering
        of carriers and in the dependence of the mobility on the
        excitation conditions by the method of the pulsed Hall
        photoeffect, Lith. J. Phys. 
18, 231 (1978)