A. Mekys
, V. Rumbauskas
, J. Storasta
,
L. Makarenko
, N. Kazuchits
Received 22 January 2014; revised 10 March 2014; accepted 29 May
2014
A set of n-type silicon samples
has been irradiated by 6.6 MeV electrons with doses from 1 to 5
(× 1016) e/cm2, and temperature
dependences of Hall and magnetoresistance mobilities were
measured. The ratio of magnetoresistance and Hall mobilities was
found equal to 1.15 ± 0.25. The correspondence of the data
measured by both methods opened the possibility of measurement
of electron mobility in semiconductors with microinhomogeneities
by magnetoresistance effect investigation.
Darbe tyrinėti n-tipo silicio
bandiniai, apšvitinti 6,6 MeV energijos elektronais,
pasitelkiant Holo ir magnetovaržos reiškinius. Bandinių
geometrija išskirtinai tinka Holo reiškiniui, tačiau norėta
išsiaiškinti, ar prasmingus rezultatus galima gauti matuojant ir
magnetovaržą. Ankstesniais tyrimais buvo nustatyta, kad Holo
įtampos signalas ženkliai iškraipomas, kai medžiagoje yra
stambesni nevienalytiškumai, pvz., atsiradę dėl švitinimo (iki
1016/cm2) greitaisiais neutronais, o
magnetovaržos signalas išlieka panašus, kaip ir nešvitintų
bandinių. Šiame darbe silicis buvo apšvitintas elektronais,
kurie daugiausiai kuria taškinius defektus. Išmatuotos
temperatūrinės judrio ir laidumo priklausomybės nuo 100 iki 300
K intervale parodė, kad nors ir nesilaikoma magnetovaržos
matavimams keliamų bandinių geometrijos reikalavimų, galima
atlikti pakankamai kokybišką krūvininkų judrio analizę.
References
/
Nuorodos
[1] M. Moll, J. Adey,
and A. Al-Ajili, et al., Development of radiation tolerant
semiconductor detectors for the Super-LHC, Nucl. Instrum.
Methods A 546, 99–107 (2005),
http://dx.doi.org/10.1016/j.nima.2005.03.044
[2] V. Bartsch, W. de Boer, and J. Bol, et al., Lorentz angle
measurements in silicon detectors, Nucl. Instrum. Methods A 478,
330 (2002),
http://dx.doi.org/10.1016/S0168-9002(01)01820-4
[3] P. Blood and J.W. Orton,
The Electrical Characterization
of Semiconductors: Majority Carriers and Electron States (Academic
Press, 1992),
http://www.amazon.com/The-Electrical-Characterization-Semiconductors-Techniques/dp/0125286279
[4] R.H. Bube, Interpretation of Hall and photo-Hall effects in
inhomogeneous materials, Appl. Phys. Lett. 13, 136 (1968),
http://dx.doi.org/10.1063/1.1652542
[5] J. Viščakas, K. Lipskis, and A. Sakalas, On the
interpretation of Hall and thermoelectric effects in
polycrystalline films, Lith. J. Phys.
11, 799 (1971)
[6] A. Medeišis and J. Viščakas, Determination of the physical
parameters of polycrystalline materials from Hall and Seebeck
effects, Lith. J. Phys.
15, 260 (1975)
[7] W. Siegel, S. Schulte, C. Reichel, G. Kuhnel, and J.
Monecke, Anomalous temperature dependence of the Hall mobility
in undoped bulk GaAs, J. Appl. Phys.
82, 3832 (1997),
http://dx.doi.org/10.1063/1.365747
[8] J. Vaitkus, A. Mekys, and J. Storasta, Analysis of
microinhomogeneity of irradiated Si by Hall and
magneto-resistance effects, in:
10th CERN-RD50 Workshop on
Radiation Hard Semiconductor Devices for Very High Luminosity
Colliders (Vilnius, 2007),
https://rd50.web.cern.ch/rd50/10th-workshop/default.htm
[9] A. Dargys and J. Kundrotas,
Handbook on Physical
Properties of Ge, Si, GaAs and InP (Science and
Encyclopedia Publishers, Vilnius, 1994)
[10] R.S. Popovic,
Hall Effect Devices (IOP Publishing
Ltd, 2004),
http://dx.doi.org/10.1887/0750308559
[11] G. Lindström, et al., Radiation hard silicon detectors -
developments by the RD48 (ROSE) collaboration, Nucl. Instrum.
Methods A
466, 308 (2001) and references therein,
http://dx.doi.org/10.1016/S0168-9002(01)00560-5
[12] P. Ščajev, A. Mekys, P. Malinovskis, J. Storasta, M. Kato,
and K. Jarašiūnas, Electrical parameters of bulk 3C-SiC crystals
determined by Hall effect, magnetoresistivity, and contactless
time-resolved optical techniques, Mater. Sci. Forum
679–680,
157 (2011),
http://dx.doi.org/10.4028/www.scientific.net/MSF.679-680.157
[13] R. Vasiliauskas, A. Mekys, P. Malinovskis, S. Juillaguet,
M. Syvajarvi, J. Storasta, and R. Yakimova, Impact of extended
defects on Hall and magnetoresistivity effects in cubic silicon
carbide, J. Phys. D
45, 225102 (2012),
http://dx.doi.org/10.1088/0022-3727/45/22/225102
[14] B. Van Zeghbroeck,
Principles of Electronic Devices,
Chapter 2: Semiconductor Fundamentals (Online textbook) (2011),
http://ecee.colorado.edu/~bart/book/
[15] R.A. Baltramiejūnas, J.V. Vaitkus, V.V. Grivickas, and J.I.
Storasta, Investigation of transient processes in the scattering
of carriers and in the dependence of the mobility on the
excitation conditions by the method of the pulsed Hall
photoeffect, Lith. J. Phys.
18, 231 (1978)