[PDF]    http://dx.doi.org/10.3952/lithjphys.54205

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 99105 (2014)


ASSESSMENT OF EFFECTIVE-MEDIUM THEORIES OF ION-BEAM SPUTTERED Nb2O5–SiO2 AND ZrO2–SiO2 MIXTURES
T. Tolenisa, M. Gaspariūnasa, M. Lelisb, A. Plukisa, R. Buzelisa, and A. Melninkaitisc
aState Research Institute for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: tomas.tolenis@ftmc.lt
bLaser Research Center, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
cLithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania

Received 15 July 2013; revised 24 October 2013; accepted 4 December 2013

Single-layer mixture coatings of ZrO2–SiO2 and Nb2O5–SiO2 produced by the ion beam sputtering (IBS) deposition technique were investigated in detail. Effective medium approximation (EMA) models and two non-optical methods, namely Rutherford backscattering spectroscopy (RBS) and X-ray photoelectron spectroscopy (XPS) were applied for characterization of elemental composition of these films. The comparison of obtained results indicates discrepancies in atomic material concentrations. The reasons and potential sources of such discrepancies are discussed qualitatively and indicate limitations of optical models.
Keywords: optical coatings, composite thin films, ion beam sputtering
PACS: 42.79.Wc, 78.66.Sq, 81.15.Cd


EFEKTYVIOSIOS TERPĖS TEORIJŲ ĮVERTINIMAS Nb2O5–SiO2 IR ZrO2–SiO2 MIŠINIUOSE, UŽGARINTUOSE JONAPLUOŠČIO DULKINIMO TECHNOLOGIJA
T. Tolenisa, M. Gaspariūnasa, M. Lelisb, A. Plukisa, R. Buzelisa, A. Melninkaitisc
aValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
cLietuvos energetikos institutas, Kaunas, Lietuva

Darbe išsamiai ištirtos vienasluoksnės ZrO2–SiO2 ir Nb2O5–SiO2 dangos, užgarintos naudojant jonapluoščio dulkinimo technologiją. Nustatant cheminę sudėtį buvo pasinaudota trimis nepriklausomomis metodikomis: efektyviosios terpės aproksimacija, Rezerfordo atgalinės sklaidos spektroskopija ir Rentgeno spindulių fotoelektronų spektroskopija. Tiesiogiai lyginant gautus rezultatus buvo pastebėta metodikų netikslumų. Tokių netikslumų priežastys atsiranda dėl netobulos stechiometrijos, bandinių užterštumo ir skirtingos medžiagos būsenos dangose. Įvertinta, kad Lorenco-Lorenzo modelis tinka nustatyti greitą ir apytikslią medžiagų koncentraciją, bet atliekant tikslesnę analizę būtini kiti metodai.

References / Nuorodos

[1] A.F. Stewart, S.M. Lu, M.M. Tehrani, and C. Volk, Ion beam sputtering of optical coatings, Proc. SPIE 2114, 662–677 (1994),
http://dx.doi.org/10.1117/12.180878

[2] P.J. Martin, Ion-based methods for optical thin film deposition, J Mater. Sci. 21, 1–25 (1986),
http://dx.doi.org/10.1007/BF01144693

[3] Ch.-Ch. Lee, Ch.-J. Tang, J.-Ch. Hsu, and J.-Y. Wu, Rugate filter made with composite thin film by ion beam sputtering, in: Optical Interference Coatings, page ThD10 (Optical Society of America, 2004),
http://dx.doi.org/10.1364/OIC.2004.ThD10

[4] J. Zhang, M. Fang, Y. Jin, and H. He, Narrow linewidth filters based on rugate structure and antireflection coating, Thin Solid Films 520(16), 5447–5450 (2012),
http://dx.doi.org/10.1016/j.tsf.2012.04.005

[5] S. Lange, H. Bartzsch, P. Frach, and K. Goedicke, Pulse magnetron sputtering in a reactive gas mixture of variable composition to manufacture multilayer and gradient optical coatings, Thin Solid Films 502(1–2), 29–33 (2006),
http://dx.doi.org/10.1016/j.tsf.2005.07.229

[6] G. Abromavičius, R. Buzelis, R. Drazdys, K. Juškevičius, S. Kičas, T. Tolenis, J. Mirauskas, M. Ščiuka, V. Sirutkaitis, and A. Melninkaitis, Optical resistance and spectral properties of antireflective coatings deposited on LBO crystals by ion beam sputtering, Lith. J. Phys. 51(4), 303–308 (2011),
http://dx.doi.org/10.3952/lithjphys.51407

[7] W.E. Johnson and R.L. Crane, Introduction to rugate filter technology, Proc. SPIE 2046, 88–108 (1993),
http://dx.doi.org/10.1117/12.163554

[8] V. Pervak, A.V. Tikhonravov, M.K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, Band filters: two-material technology versus rugate, Appl. Opt. 46(8), 1190–1193 (2007),
http://dx.doi.org/10.1364/AO.46.001190

[9] R.R. Willey, Practical Design and Production of Optical Thin Films, 2nd ed. (Marcel Dekker, 2005),
http://www.amazon.co.uk/Practical-Production-Optical-Science-Engineering/dp/0824708490/

[10] Sh. Chao, W.-H. Wang, and Ch.-Ch. Lee, Low-loss dielectric mirror with ion-beam-sputtered TiO2-SiO 2 mixed films, Appl. Opt. 40(13), 2177–2182 (2001),
http://dx.doi.org/10.1364/AO.40.002177

[11] B.J. Pond, J.I. DeBar, C.K. Carniglia, and T. Raj, Stress reduction in ion beam sputtered mixed oxide films, Appl. Opt. 28(14), 2800–2805 (1989),
http://dx.doi.org/10.1364/AO.28.002800

[12] M. Jupé, M. Lappschies, L. Jensen, K. Starke, and D. Ristau, Applications of mixture oxide materials for fs optics, in: Optical Interference Coatings, page TuA6 (Optical Society of America, 2007),
http://dx.doi.org/10.1364/OIC.2007.TuA6

[13] D. Nguyen, L.A. Emmert, I.V. Cravetchi, M. Mero, W. Rudolph, M. Jupé, M. Lappschies, K. Starke, and D. Ristau, TixSi1–xO2 optical coatings with tunable index and their response to intense subpicosecond laser pulse irradiation, Appl. Phys. Lett. 93, 261903(2008),
http://dx.doi.org/10.1063/1.3050536

[14] V. Janicki, J. Sanchoparramon, and H. Zorc, Refractive index profile modelling of dielectric inhomogeneous coatings using effective medium theories, Thin Solid Films 516(10), 3368–3373 (2008),
http://dx.doi.org/10.1063/1.3050536

[15] K. Drogowska, Z. Tarnawski, A. Brudnik, E. Kusior, M. Sokoł owski, K. Zakrzewska, A. Reszka, N.-T.H. Kim-Ngan, and A.G. Balogh, RBS, XRR and optical reflectivity measurements of Ti-TiO2 thin films deposited by magnetron sputtering, Mater. Res. Bull. 47(2), 296–301 (2012),
http://dx.doi.org/10.1016/j.materresbull.2011.11.026

[16] R. Vlastou, E. Fokitis, M. Kokkoris, S. Kossionides, G. Koubouras, and R. Grotzschel, Characterization of multilayer thin film optical filters using RBS, AIP Conf. Proc. 576(1), 436–439 (2001),
http://dx.doi.org/10.1063/1.1395342

[17] M. Alvisi, L. Mirenghi, L. Tapfer, A. Rizzo, M.C. Ferrara, S. Scaglione, and L. Vasanelli, Structural and chemical investigation of surface and interface of multilayer optical coatings deposited by DIBS, Appl. Surf. Sci. 157(1–2), 52–60 (2000),
http://dx.doi.org/10.1016/S0169-4332(99)00520-6

[18] D. Ristau, H. Ehlers, T. Gross, and M. Lappschies, Optical broadband monitoring of conventional and ion processes, Appl. Opt. 45(7), 1495–1501 (2006),
http://dx.doi.org/10.1364/AO.45.001495

[19] A. Melninkaitis, T. Tolenis, L. Mažule, J. Mirauskas, V. Sirutkaitis, B. Mangote, X. Fu, M. Zerrad, L. Gallais, M. Commandré, S. Kičas, and R. Drazdys, Characterization of zirconia– and niobia–silica mixture coatings produced by ion-beam sputtering, Appl. Opt. 50(9), C188–C196 (2011),
http://dx.doi.org/10.1364/AO.50.00C188

[20] Optilayer, 1996, http://www.optilayer.com, last accessed: 13/11/2012

[21] J.C. Maxwell Garnett, Colours in metal glasses and in metallic films, Phil. Trans. R. Soc. Lond. A 203(329–371), 385–420 (1904),
http://dx.doi.org/10.1098/rsta.1904.0024

[22] D.A.G. Bruggeman, Berechnung verschiedenerphysikalischer Konstanten von heterogenen Substanzen. i. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen, Annalen der Physik 416(7), 636–664 (1935),
http://dx.doi.org/10.1002/andp.19354160705

[23] H.A. Lorentz, Ueber die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte, Annalen der Physik 245(4), 641–665 (1880),
http://dx.doi.org/10.1002/andp.18802450406

[24] L. Lorenz, Ueber die Refractionsconstante, Annalen der Physik 247(9), 70–103 (1880),
http://dx.doi.org/10.1002/andp.18802470905

[25] M. Gaspariunas, G. Gervinskas, V. Kovalevskij, R. Plukiene, Š. Vaitekonis, V. Levenets, and A. Plukis, Proton and ion microbeam collimation for irradiation of biological samples in air, Lith. J. Phys. 50, 363–368 (2010),
http://dx.doi.org/10.3952/lithjphys.50306

[26] M. Mayer, SIMNRA, a simulation program for the analysis of NRA, RBS and ERDA, AIP Conf. Proc. 475(1), 541–544 (1999),
http://dx.doi.org/10.1063/1.59188

[27] E. Rauhala, N.P. Barradas, S. Fazinic, M. Mayer, E. Szilágyi, and M. Thompson, Status of ion beam data analysis and simulation software, Nucl. Instrum. Methods B 244(2), 436–456 (2006),
http://dx.doi.org/10.1016/j.nimb.2005.10.024

[28] N.P. Barradas, K. Arstila, G. Battistig, M. Bianconi, N. Dytlewski, C. Jeynes, E. Kótai, G. Lulli, M. Mayer, E. Rauhala, E. Szilágyi, and M. Thompson, International Atomic Energy Agency intercomparison of ion beam analysis software, Nucl. Instrum. Methods B 262(2), 281–303 (2007),
http://dx.doi.org/10.1016/j.nimb.2007.05.018

[29] S.G. Yoon, Y.T. Kim, H.K. Kim, M.J. Kim, H.M. Lee, and D.H. Yoon, Comparision of residual stress and optical properties in Ta2O5 thin films deposited by single and dual ion beam sputtering, Mater. Sci. Eng. B 118(1–3), 234–237 (2005); EMRS 2004, Symposium D: Functional Oxides for Advanced Semiconductor Technologies,
http://dx.doi.org/10.1016/j.mseb.2004.12.055

[30] O. Stenzel, S. Wilbrandt, N. Kaiser, M. Vinnichenko, F. Munnik, A. Kolitsch, A. Chuvilin, U. Kaiser, J. Ebert, S. Jakobs, and A. Kaless, The correlation between mechanical stress, thermal shift and refractive index in HfO2, Nb2O5, Ta2O5 and SiO2 layers and its relation to the layer porosity, Thin Solid Films 517(21), 6058–6068 (2009),
http://dx.doi.org/10.1016/j.tsf.2009.05.009