A.F. Orliukas
, K.-Z. Fung
, V. Venckutė
,
V. Kazlauskienė
, J. Miškinis
, A. Dindune
Z. Kanepe
, J. Ronis
, A. Maneikis
,
T. Šalkus
, and A. Kežionis
Received 6 September 2013; revised 14 October 2013; accepted 4
December 2013
References
/
Nuorodos
[1] Sh.-i. Nishimura, M.
Nakamura, R. Natsui, and A. Yamada, New lithium iron
pyrophosphate as 3.5 V class cathode material for lithium ion
battery, J. Am. Chem. Soc.
132, 13596–13597 (2010),
http://dx.doi.org/10.1021/ja106297a
[2] C.V. Ramana, A. Mauger, F. Gendron, C.M. Julien, and K.
Zaghib, Study of the Li-insertion/extraction process in LiFePO
4/FePO
4,
J. Power Sources
187, 555–564 (2009),
http://dx.doi.org/10.1016/j.jpowsour.2008.11.042
[3] K. Rissouli, K. Benghouja, J.R. Ramos-Berrado, and C.
Julien, Electrical conductivity in lithium orthophosphates,
Mater. Sci. Eng. B
98, 185–189 (2003),
http://dx.doi.org/10.1016/S0921-5107(02)00574-3
[4] Ch. Wang and J. Hong, Ionic/electronic conducting
characteristics of LiFePO
4 cathode materials. The
determining factors for high rate performance, Electochem. Solid
State Lett.
10(3), A65–A69 (2007),
http://dx.doi.org/10.1149/1.2409768
[5] J. Molenda, W. Ojczyk, K. Swierczek, W. Zajac, F. Krok, J.
Dygas, and R.-Sh. Liu, Diffusional mechanism of deintercalation
in LiFe
1−yMn
yPO
4
cathode material, Solid State Ionics
177, 2617–2624
(2006),
http://dx.doi.org/10.1016/j.ssi.2006.03.047
[6] H. Goktepe, H. Sahan, F. Kilic, and S. Patat, Improved of
cathode performance of LiFePO
4/C composite using
different carboxylic acids as carbon sources for lithium-ion
batteries, Ionics 16, 203–208 (2010),
http://dx.doi.org/10.1007/s11581-009-0382-9
[7] R. Amin, Ch. Lin, J. Peng, K. Weichert, T. Acarturk, U.
Starke, and J. Maier, Silicon-doped LiFePO
4 single
crystals: growth, conductivity behavior, and diffusivity, Adv.
Funct. Mater.
19, 1697–1704 (2009),
http://dx.doi.org/10.1002/adfm.200801604
[8] L. Wang, H. Wang, Z. Liu, C. Xiao, S. Dong, P. Han, Z.
Zhang, X. Zhang, C. Bi, and G. Cui, A facile method of preparing
mixed conducting LiFePO
4/graphene composites for
lithium-ion batteries, Solid State Ionics
181, 1685–1689
(2010),
http://dx.doi.org/10.1016/j.ssi.2010.09.056
[9] Y.-H. Rho, L.F. Nazar, L. Perry, and D. Ryan, Surface
chemistry of LiFePO
4 studied by Mössbauer and X-ray
photoelectron spectroscopy and its effect on electrochemical
properties, J. Electrochem. Soc.
154(4), A283–A289
(2007),
http://dx.doi.org/10.1149/1.2433539
[10] M. Manickam, P. Singh, S. Thurgate, and K. Prince, Redox
behavior and surface characterization of LiFePO
4 in
lithium hydroxide electrolyte, J. Power Sources
158,
646–649 (2006),
http://dx.doi.org/10.1016/j.jpowsour.2005.08.059
[11] A. Kežionis, B. Butvilas, T. Šalkus, S. Kazlauskas, D.
Petrulionis, T. Žukauskas, E. Kazakevičius, and A.F. Orliukas,
Four-electrode impedance spectrometer for investigation of solid
ion conductors, Rev. Sci. Instrum.
84, 013902-8 (2013),
http://dx.doi.org/10.1063/1.4774391
[12] A. Kežionis, E. Kazakevičius, T. Šalkus, and A. Orliukas,
Broadband high frequency impedance spectrometer with working
temperatures up to 1200 K, Solid State Ionics
188,
110–113 (2011),
http://dx.coi.org/10.1016/j.ssi.2010.09.034
[13] A.P. Grosvenor, B.A. Kobe, M.C. Biesinger, and N.S.
McIntyre, Investigation of multiplet splitting of Fe 2p XPS
spectra and bonding in iron compounds, Surf. Interface Anal.
36,
1564–1574 (2004),
http://dx.doi.org/10.1002/sia.1984
[14] M. Mullet, Y. Guillemin, and C. Ruby, Oxidation and
deprotonation of synthetic Fe
II–Fe
III
(oxy)hydroxycarbonate Green Rust: An X-ray photoelectron study,
J. Solid State Chem.
181, 81–89 (2008),
http://dx.doi.org/10.1016/j.jssc.2007.10.026
[15] H. Liu, H. Yang, and J. Li, A novel method for preparing
LiFePO
4 nanorods as a cathode material for
lithium-ion power batteries, Electrochimica Acta 55, 1626–1629
(2010),
http://dx.doi.org/10.1016/j.electacta.2009.10.039
[16] H. Mazor, D. Golodnitsky, L. Burstein, A. Gladkich, and E.
Peled, Electrophoretic deposition of lithium iron phosphate
cathode for thin-film 3D-microbatteries, J. Power Sources
198,
264–272 (2012),
http://dx.doi.org/10.1016/j.jpowsour.2011.09.108
[17] M. Nocun, Structural studies of phosphate glasses with high
ionic conductivity, J. Non-Cryst. Solids
333, 90–94
(2004),
http://dx.doi.org/10.1016/j.jnoncrysol.2003.09.047
[18] C.V. Ramana, A. Ait-Salah, S. Utsunomiya, J.-F. Morhange,
A. Mauger, F. Gendron, and C.M. Julien, Spectroscopic and
chemical imaging analysis of lithium iron triphosphate, J. Phys.
Chem. C
111, 1049–1054 (2007),
http://dx.doi.org/10.1021/jp065072c
[19] V. Sieber, H. Hildebrand, S. Virtanen, and P. Schmuki,
Investigations on the passivity of iron in borate and phosphate
buffers, pH 8.4, Corros. Sci.
48, 3472–3488 (2006),
http://dx.doi.org/10.1016/j.corsci.2005.12.008
[20] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R.
Sobiestianskas, E. Kazakevicius, and A. Orliukas, Electrical
conductivity dispersion in co-doped NASICON samples, Phys.
Status Solidi
183, 323–330 (2001),
http://dx.doi.org/10.1002/1521-396X(200102)183:2<323::AIDPSSA323>3.0.CO;2-6
[21] M. Cretin and P. Fabri, Comparative study of lithium ion
conductors in the system Li
1+xAl
xA
2−xIV(PO
4)
3
with A
IV=Ti or Ge and 0≤
x≤0·7 for use as Li
+
sensitive membranes, J. Eur. Ceram. Soc.
19, 2931–2940
(1999),
http://dx.doi.org/10.1016/S0955-2219(99)00055-2