INVESTIGATION OF SOLAR SIMULATOR
BASED ON HIGH-POWER LIGHT-EMITTING DIODES
A. Novičkovas
a,b, A. Baguckis
a, A. Vaitkūnas
a,
A. Mekys
a,b, and V. Tamošiūnas
a,c
aFaculty of Physics, Vilnius University, Saulėtekio
9-III, LT-10222 Vilnius, Lithuania
bInstitute of Applied Research, Vilnius
University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
cCenter for Physical Sciences and Technology, A.
Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: algirdas.novickovas@tmi.vu.lt
Received 30 October 2013; revised 10 January 2014; accepted 29 May
2014
High-power light-emitting diodes
for application in a solar simulator were evaluated. The solar
simulator was designed using only 6 types of high-power LEDs.
The irradiance non-uniformity of this simulator was investigated
and it was demonstrated that a small array (only 25 units) of
selected light-emitting diodes can provide sufficient irradiance
to achieve AM1.5G requirements for the test area of at least
several cm in diameter without any secondary optics.
Keywords:
solar simulator, light-emitting diode, AM1.5G
PACS: 42.72.-g, 85.60.Jb
DIDELĖS GALIOS ŠVIESTUKUS
NAUDOJANČIO SAULĖS IMITATORIAUS TYRIMAS
A. Novičkovasa,b, A. Baguckisa, A.
Vaitkūnasa, A. Mekysa,b, V. Tamošiūnasa,c
aVilniaus universiteto Fizikos fakultetas,
Vilnius, Lietuva
bVilniaus universiteto Taikomųjų mokslų
institutas, Vilnius, Lietuva
cFizinių ir technologijos mokslų centras,
Vilnius, Lietuva
Straipsnyje aprašytos didelės galios
šviestukų (šviesos diodų) panaudojimo saulės imitatoriui
galimybės, parinkimas, pateikta imitatoriaus prototipo
konstrukcija ir charakterizavimo rezultatai. Nustatyta, kad iš 6
tipų didelės galios šviestukų sudarytas kompaktiškas masyvas
gali būti naudojamas kaip saulės imitatorius, kurio
spinduliuotės spektro galios pasiskirstymas ir apšvietos
netolygumas kelių kvadratinių centimetrų matavimo plokštumoje
atitinka saulės imitatoriams taikomo standarto IEC 60904-9
sąlygas.
References
/
Nuorodos
[1] ASTM
International Standard
ASTM
E927
[2] International Electrotechnical Commission Standard IEC
60904-9 Ed. 2.0,
http://webstore.iec.ch/webstore/webstore.nsf/artnum/038483
[3] S. Kohraku and K. Kurokawa, New method for solar cell
measurement by LED solar simulator, in:
Proceedings of 3rd
World Conference on Photovoltaic Energy Conversion, Vol. 2
(Osaka, Japan, 2003), pp. 1977–1980,
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1306332
[4] S. Kohraku and K. Kurokawa, A fundamental experiment for
discrete-wavelength LED solar simulator, Sol. Energ. Mat. Sol.
Cells
90(18), 3364–3370 (2006),
http://dx.doi.org/10.1016/j.solmat.2005.09.024
[5] M. Bliss, T.R. Betts, and R. Gottshalg, An LED-based
photovoltaic measurement system with variable spectrum and flash
speed, Sol. Energ. Mat. Sol. Cells
93(6–7), 825–830
(2009),
http://dx.doi.org/10.1016/j.solmat.2008.09.056
[6] S.H. Jang and M.W. Shin, Fabrication and thermal
optimization of LED solar cell simulator, Curr. Appl. Phys.
10(3),
S537–S539 (2010),
http://dx.doi.org/10.1016/j.cap.2010.02.035
[7] F.C. Krebs, K.O. Sylvester-Hvid, and M. Jørgensen, A
self-calibrating LED-based solar test platform, Prog. Photovolt:
Res. Appl.
19(1), 97–112 (2011),
http://dx.doi.org/10.1002/pip.963
[8] B.H. Hamadani, K. Chua, J. Roller, M.J. Bennahmias, B.
Campbell, H.W. Yoon, and B. Dougherty, Towards realization of a
large-area light-emitting diode-based solar simulator, Prog.
Photovolt. Res. Appl.
21(4), 779–789 (2011),
http://dx.doi.org/10.1002/pip.1231
[9] A.M. Bazzi, Z. Klein, M. Sweeney, K. Kroeger, P. Shenoy, and
P.T. Krein, Solid-state light simulator with current-mode
control, in:
Proceedings of Twenty-Sixth Annual IEEE Applied
Power Electronics Conference and Exposition (APEC) (Fort
Whort, USA, 2011) pp. 2047–2053,
http://dx.doi.org/10.1109/APEC.2011.5744878