[PDF]    http://dx.doi.org/10.3952/lithjphys.54208

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 120124 (2014)


XPS STUDY OF SOL–GEL PRODUCED LANTHANUM OXIDE THIN FILMS
E. Baškysa, V. Bondarenkaa,b, S. Grebinskija, M. Senulisa, and R. Sereikab
aSemiconductor Physics Institute, Center for Physical Sciences and Technology A. Goštauto 11, LT-01108 Vilnius, Lithuania
bFaculty of Science and Technology, Lithuanian University of Educational Sciences, Studentų 39, LT-08106 Vilnius, Lithuania
E-mail: raimundas.sereika@leu.lt

Received 11 November 2013; revised 4 February 2014; accepted 29 May 2014

La2O3 thin films were prepared by a sol–gel method and annealed in air and vacuum at various temperatures. The X-ray photoelectron spectroscopy (XPS) was used to investigate the properties and composition of films. The La 3d and O 1s spectra of films were analysed. It was shown that oxygen ions in La2O3 are in two states – O2– anions connected with lanthanum, and oxygen in the (OH)– group. The thermal transformation of lanthanum hydroxide to oxide process was triggered by thermal treatment at temperatures above 600 K. It was shown that after annealing thin films for longer time intervals in vacuum the intensity of O2– component increases and the intensity of oxygen in (OH)– decreases. The drop of oxygen in the (OH)– group was attributed to dehydration process.
Keywords: La2O3 thin films, sol–gel method, XPS, oxide materials
PACS: 61.05.C-, 71.15.Nc, 81.20.Fw


ZOLIŲ-GELIŲ METODU PAGAMINTŲ PLONŲJŲ LANTANO OKSIDO SLUOKSNIŲ XPS TYRIMAS
E. Baškysa, V. Bondarenkaa,b, S. Grebinskija, M. Senulisa, R. Sereikab
aFizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva
bLietuvos edukologijos universiteto Gamtos, matematikos ir technologijų fakultetas, Vilnius, Lietuva

Plonieji La2O3 sluoksniai pagaminti naudojant zolių-gelių technologijos metodus. Po sluoksnių sintezės jie buvo termiškai apdorojami oro atmosferoje ir vakuume (10–7 Pa) temperatūrų intervale 673–823 K nuo 2 iki 92 val. Po kiekvieno apdorojimo ciklo buvo matuojami bandinių rentgeno fotoelektronų spektrai (XPS).
Nustatyta, kad nepriklausomai nuo apdorojimo režimo (temperatūros ir laiko) lantano jonai bandiniuose yra stabilios La3+ būsenos. Visais atvejais deguonies O 1s RFS smailė turi savyje dvi dedamąsias su ryšio energijomis ~528 ir ~531 eV, kurios atitinka O2– jonus oksido gardelėje ir deguonį, surištą hidroksilinėje grupėje (OH). Didėjant bandinių apdorojimo temperatūrai ir laikui didėja O2– jonų koncentracija bei mažėja deguonies kiekis (OH) grupėje.
Visuose bandiniuose nepastebėta absorbuoto vandens. Po terminio bandinių apdorojimo vakuume aptikta mažėjanti (OH) grupių koncentracija leidžia manyti, kad, tinkamai parinkus technologinius sluoksnių terminio atkaitinimo vakuume režimus (panaudojant zolių-gelių sintezės metodus), galima gauti nehigroskopinius lantano oksido sluoksnius.

References / Nuorodos

[1] J.B. Torrance, P. Lacorre, and A.I. Nazzal, Systematic study of insulator–metal transitions in perovskites RNiO3 (R = Pr, Nd, Sm, Eu) due to closing of charge transfer gap, Phys. Rev. B 45, 8209–8212 (1992),
http://dx.doi.org/10.1103/PhysRevB.45.8209

[2] R. von Helmolt, J. Wecker, R. Holzapfel, L. Schultz, and K. Samwer, Giant negative magnetoresistance in perovskite like La2/3Ba1/3MnOx ferromagnetic films, Phys. Rev. Lett. 71, 2331–2333 (1993),
http://dx.doi.org/10.1103/PhysRevLett.71.2331

[3] T. Venkatesan, M. Rajeswari, Z.W. Dong, S.B. Ogale, and R. Ramesh, Manganite-based devices: opportunities, bottlenecks and challenges, Philos. Trans. R. Soc. Lond. A 356, 1661–1680 (1998),
http://dx.doi.org/10.1098/rsta.1998.0240

[4] R. Ramesh, S. Aggarwal, and O. Auciello, Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories, Mater. Sci. Eng. R. Rep. 32, 191–236 (2001),
http://dx.doi.org/10.1016/S0927-796X(00)00032-2

[5] S. Mickevičius, S. Grebinskij, V. Bondarenka, H. Tvardauskas, M. Senulis, V. Lisauskas, K. Šliužienė, B. Vengalis, B.A. Orlowski, and E. Baškys, Surface stability of epitaxial LaNiO3−δ thin films, Lith. J. Phys. 50, 317–323 (2010),
http://dx.doi.org/10.3952/lithjphys.50302

[6] J. Choisnet, N. Abadzhieva, P. Stefanov, D. Klissurski, J.M. Bassat, V. Rives, and L. Minchev, X-ray photoelectron spectroscopy, temperature-programmed desorption and temperature-programmed reduction study of LaNiO3 and La2NiO4+δ catalysts for methanol oxidation, J. Chem. Soc. Faraday Trans. 90, 1987–1991 (1994),
http://dx.doi.org/10.1039/ft9949001987

[7] Y.N. Li Chen, J. Zhou, S. Song, L. Liu, Z. Yin, and C. Cai, Effect of the oxygen concentration on the properties of Gd2O3 thin films, J. Cryst. Growth 265, 548–552 (2004),
http://dx.doi.org/10.1016/j.jcrysgro.2004.02.095

[8] V. Bondarenka, S. Grebinskij, V. Lisauskas, S. Mickevičius, K. Šliužienė, H. Tvardauskas, and B. Vengalis, XPS study of epitaxial LaNiO3−x films, Lith. J. Phys. 46, 95–99 (2006),
http://dx.doi.org/10.3952/lithjphys.46114

[9] S. Mickevičius, S. Grebinskij, V. Bondarenka, H. Tvardauskas, M. Senulis, V. Lisauskas, K. Šliužienė, B. Vengalis, E. Baškys, and R.L. Johnson, Resonant photoemission of LaNiO3−δ thin films, Lith. J. Phys. 50, 241–246 (2010),
http://dx.doi.org/10.3952/lithjphys.50209

[10] W.-S. Kim, S.-K. Park, D.-Y. Moon, B.-W. Kang, H.-D. Kim, and J.-W. Park, Characteristics of La2O3 thin films deposited using the ECR atomic layer deposition method, J. Korean Phys. Soc. 55, 590–593 (2009),
http://dx.doi.org/10.3938/jkps.55.590

[11] Ch.-S. Wu and H.-Ch. Liu, Structural and electrical characteristics of lanthanum oxide gate dielectric films on GaAs pHEMT technology, J. Semicond. 30, 1140024-1–114004-4 (2009),
http://dx.doi.org/10.1088/1674-4926/30/11/114004

[12] M.F. Sunging, K. Hadidi, S. Diplas, O.M. Løvvik, T.E. Norby, and A.E. Gunnæs, XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures, J. Electron Spectrosc. Relat. Phenom. 184, 399–409 (2011),
http://dx.doi.org/10.1016/j.elspec.2011.04.002

[13] A. Bahari, A. Anasari, and Z. Rahmani, Low temperature synthesis of La2O3 and CrO2 by sol–gel process, J. Eng. Technol. Res. 3(7), 203–208 (2011),
http://www.academicjournals.org/journal/JETR/article-abstract/642383112607

[14] A. Bahari and A. Ramzannejad, Phase transportation and nano structural properties of La2O3, Int. J. Res. Pharm. Biomed. Sci. 2(4), 1593–1598 (2011),
http://www.ijrpbsonline.com/files/RC7.pdf

[15] M.W. Zhu, Z.J. Wang, Y.N. Chen, and Z.D. Zhang, Microstructure and transport properties of sol–gel derived highly (100) oriented lanthanum nickel oxide thin films on SiO2/Si substrate, J. Cryst. Growth 336, 44–49 (2011),
http://dx.doi.org/10.1016/j.jcrysgro.2011.09.050

[16] S. Mickevičius, S. Grebinskij, V. Bondarenka, H. Tvardauskas, B. Vengalis, K. Šliužienė, B.A. Orlovski, and W. Drube, Investigation of the aging of epitaxial LaNiO3-x films by X-ray photoelectron spectroscopy, Optica Applicata 36, 235–243 (2006),
http://www.if.pwr.wroc.pl/~optappl/article.php?lp=70

[17] B.F. Dzhurinskii, D. Gati, N.P. Sergushin, V.I. Nefedov, and Ya.V. Salin, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Russ. J. Inorg. Chem. 22, 2307–2314 (1975)

[18] Handbook of X-ray Photoelectron Spectroscopy, eds. J.F. Moudler, W.F. Stiche, P.E. Sobol, and K.D. Bomben (Physical Electronic Inc., Eden Praire, USA, 1995),
http://www.amazon.co.uk/Handbook-Ray-Photoelectron-Spectroscopy-624755/dp/0962702625/

[19] T.L. Barr, An ESCA study of the passivation of elemental metals, J. Phys. Chem. 82(16), 1801–1810 (1978),
http://dx.doi.org/10.1021/j100505a006