[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2960

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 199–203 (2014)


STUDY OF THE IRON ATOMS CLUSTERING IN MECHANICALLY ALLOYED Al-RICH Fe-Al MIXTURE
V. Bėčytė, K. Mažeika, and R. Juškėnas
Center for Physical Sciences and Technology, Savanorių 231, LT- 02300, Vilnius, Lithuania
E-mail: violeta.becyte@gmail.com

Received 23 October 2013; revised 5 February 2014; accepted 29 May 2014

Structural changes in Fe-Al system modified by high energy ball milling were studied using Mössbauer spectroscopy and X-ray diffraction. Pure Fe and Al powders were mixed in compositions with 0.5, 1.5 and 5 at.% Fe and milled for various times using Fritsch Pulverisette planetary mill. The formation of iron clusters was observed when the percentage of paramagnetic iron was higher than 0.5 at.%. It was found, that the arrangement of Fe atoms in iron clusters is similar to that observed in FeAln (n ≥\geq 2) intermetallic compounds.
Keywords: Mössbauer spectroscopy, ball milling, clusters, nanoparticles
PACS: 78.40.Kc, 61.66.Dk, 81.30.Bx

GELEŽIES ATOMŲ GRUPAVIMOSI Fe-Al LYDINIUOSE TYRIMAS MALANT

V. Bėčytė, K. Mažeika, R. Juškėnas
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Nanokristaliniai geležies ir aliuminio milteliai buvo malami azoto atmosferoje rutuliniu Pulverisette malūnu. Fe atomų būsenos pokyčiai buvo stebėti Mesbauerio (Mössbauer) spektroskopijos ir Rengeno difrakcijos metodais. Pasinaudojus Mesbauerio spektroskopijos metodu gautais parametrais, įvertintas susidariusių geležies būsenų kitimas didinant malimo trukmę. Paramagnetinės geležies būsenų kitimas gali būti paaiškinamas geležies spiečių susidarymu, kai paramagnetinės geležies atomų kiekis >0,5 at.%. Atominė tvarka geležies spiečiuose turėtų būti tokia pati kaip ir FeAln (n ≥\geq 2) intermetaliniuose lydiniuose.

References / Nuorodos

[1] M. Potesser, T. Schoeber, H. Antrekowitsch, and J. Bruckner, The characterization of the intermetallic Fe–Al layer of steel–aluminum weldings, in: EPD Congress, eds. S.M. Howard etc (Curran Associates, Inc., 2006) pp. 167–176,
http://www.amazon.com/EPD-Congress-2006-Extraction-Processing/dp/0873396138/
[2] R. Prescott and M. J. Graham, The oxidation of iron–aluminum alloys, Oxidation of Metals 38, 73–87 (1992),
http://dx.doi.org/10.1007/BF00665045
[3] C. Suryanarayana, Mechanical alloying and milling, Progr. Mater. Sci. 46, 1–184 (2001),
http://dx.doi.org/10.1016/S0079-6425(99)00010-9
[4] F. Cardellini, V. Contini, R. Gupta, G. Mezzone, A. Montone, A. Perin, and G. Principi. Microstructural evolution of Al–Fe powder mixtures during high-energy ball milling, J. Mater. Sci. 33, 2519–2527 (1998),
http://dx.doi.org/10.1023/A:1004388732126
[5] S. Enzo, F. Frattini, G. Mulas, and G. Principi, Structural transformation of Al–Fe alloys analyzed by neutron diffraction and Mössbauer spectroscopy, J. Mater. Sci. 39, 6333–6339 (2004),
http://dx.doi.org/10.1023/B:JMSC.0000043603.28152.bc
[6] L. D’Angelo, L. D’Onofrio, and G. Gonzalez, Nanophase intermetallic FeAl obtained by sintering after mechanical alloying, J. Alloy. Comp. 483, 154–158 (2009),
http://dx.doi.org/10.1016/j.jallcom.2008.07.208
[7] V. Sebastian, N. Lakshmi, and K. Venugopalan, Correlation between microstructure and magnetic properties in mechanically alloyed nanogranular Fe100-xAlx,. Mater. Lett. 61, 4635–4638 (2007),
http://dx.doi.org/10.1016/j.matlet.2007.02.064
[8] M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Progr. Mater. Sci. 51, 427–556 (2006),
http://dx.doi.org/10.1016/j.pmatsci.2005.08.003
[9] L. F. Kiss, D. Kaptàs, J. Balogh, L. Bujdosó, T. Kemény, and L. Vincze, Rigid magnetic foam-like behavior in ball-milled FeAl, Phys. Rev. B 70, 012408 (2004),
http://dx.doi.org/10.1103/PhysRevB.70.012408
[10] K. Mažeika, J. Reklaitis, G. Lujanienė, D. Baltrūnas, and A. Baltušnikas, Modification of nanocrystalline magnetite by milling, Lith. J. Phys. 46(4), 451–457 (2006),
http://dx.doi.org/10.3952/lithjphys.46408
[11] V. Sebastian, N. Lakshmi, and K. Venugopalan, Evolution of magnetic order in mechanically alloyed Al–1 at% Fe, J. Magn. Magn. Mater. 309, 153–159 (2007),
http://dx.doi.org/10.1016/j.jmmm.2006.06.026
[12] R.A. Dunlap, J.R. Dahn, D.A. Eelman, and G.R. MacKay, Microstructure of supersaturated fcc Al–Fe alloys: A comparison of rapidly quenched and mechanically alloyed Al98Fe2, Hyperfine Interact. 116, 117–126 (1998),
http://dx.doi.org/10.1023/A:1012685713970
[13] L. Murgas, Z. Homonnay, S. Nagy, and A. Vertes, Investigation of phase transformation in an Al-0.58 wt% Fe alloy by Mössbauer spectroscopy, Hyperfine Interact. 41, 595–598 (1988),
http://dx.doi.org/10.1007/BF02400461
[14] R.A. Dunlap, K. Dini, G. Stroink, G.S. Collins, and S. Jha, An Fe Mössbauer effect study of metastable Al86Fe14 prepared by rapid solidification, Hyperfine Interact. 28, 963–966 (1986),
http://dx.doi.org/10.1007/BF02061604
[15] Ji Chi, Yang Li, F. G. Vagizov, V. Goruganti, and Joseph H. Ross, NMR and Mössbauer study of spin-glass behavior in FeAl2, Phys. Rev. B 71, 024431(2005),
http://dx.doi.org/10.1103/PhysRevB.71.024431
[16] D. Kaptàs, E. Sváb, Z. Samogyvàri, G. André, J. Balogh, L. Bujdosó, T. Kemény, and L. Vincze, Intercommensurate antiferromagnetism in FeAl2: Magnetic, Mössbauer, and neutron diffraction measurements, Phys. Rev. B 73, 012401 (2006),
http://dx.doi.org/10.1103/PhysRevB.73.012401
[17] B.V. Reddy, S.N. Khanna, and S.C. Deevi, Electronic structure and magnetism in (FeAl)n (n\leq6) clusters, Chemical Physics Letters 333, 465–470 (2001),
http://dx.doi.org/10.1016/S0009-2614(00)01393-2
[18] T. Mukai, S. Suresh, K. Kita, H. Sasaki, N. Kobayashi, K. Higashi, and A. Inoue, Nanostructured Al–Fe alloys produced by e-beam deposition: static and dynamic tensile properties, Acta Mater. 51, 4197–4208 (2003),
http://dx.doi.org/10.1016/S1359-6454(03)00237-4
[19] R.A. Dunlap, D.J. Lloyd, I.A. Christie, G. Stroink, and Z.M. Stadnik, Physical properties of rapidly quenched Al–Fe alloys, J. Phys. F Met. Phys. 18, 1329–1341 (1988),
http://dx.doi.org/10.1088/0305-4608/18/7/004
[20] S. Nasu, U. Gonser, P.H. Shingu, and Y. Murakami, 57Fe Mossbauer spectra in splat quenched Al-0.5, 1, 3 and 5 at % Fe alloys, J. Phys. F Met. Phys. 4, L24–L28 (1974),
http://dx.doi.org/10.1088/0305-4608/4/2/005
[21] D.A. Eelman, J.R. Dahn, G.R. MacKay, and R.A. Dunlap, An investigation of mechanically alloyed Fe–Al, J. Alloy. Comp. 266, 234–240 (1998),
http://dx.doi.org/10.1016/S0925-8388(97)00508-2
[22] I. Dezsi, U. Gonser, and G. Langouche, Systematics of the isomer shifts of 57Fe in various hosts, Phys. Rev. Lett. 62(14), 1659–1662 (1989),
http://dx.doi.org/10.1103/PhysRevLett.62.1659
[23] E.P. Yelsukov, A.L. Ul’yanov, A.V. Protasov, and D.A. Kolodkin, Solid state reactions upon mechanical alloying of an Fe32Al68 binary mixture, Phys. Met. Metalloved. 113(6), 602–611 (2012),
http://dx.doi.org/10.1134/S0031918X12060063
[24] J.E. Frackowiak, Mössbauer isomer shift and hyperfine fields of ordered and disordered Fe3Al alloys, Hyperfine Interact. 54, 793–798 (1990),
http://dx.doi.org/10.1007/BF02396130
[25] J. Nehra, S. Jani, V. D. Sudheesh, K. Kabra,·L. Nambakkat, and K. Venugopalan, Variation of magnetic properties in heat treated and ball milled Fe3Al alloy, Hyperfine Interact. 211, 123–133 (2012),
http://dx.doi.org/10.1007/s10751-011-0553-8