[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2958

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 177–186 (2014)


SIMULATION OF Si AND GaAs SUBMICRON TRAPATT DIODES
J. Vyšniauskas and J. Matukas
Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mails: juozas.vysniauskas@ff.vu.lt; jonas.matukas@ff.vu.lt

Received 12 February 2014; revised 27 March 2014; accepted 29 May 2014

Plasma formation and extraction processes in submicron silicon N+NP+, GaAs N+NP+, and GaAs NM Schottky TRAPATT (TRApped Plasma Avalanche Triggered Transit) diodes were simulated. The simulation of GaAs TRAPATT diodes was done for the first time. The quasi-hydrodynamic model was chosen for the simulation of the processes. The Synopsys TCAD Sentaurus Software Package was used. The carrier mobility dependence on phonon scattering,  impurity scattering, carrier-carrier scattering, intervalley scattering (for GaAs), and mobility saturation in high electric field was taken into account. Several generation-recombination mechanisms were included: impact ionization, Shockley–Read–Hall recombination (SRH) with doping-dependent lifetimes, trap-assisted tunneling, band-to-band tunneling, Auger recombination, and radiative recombination (for GaAs). We show that the so-called critical current density for plasma formation in the submicron diodes increases with the active layer thickness decrease and almost does not depend on the doping density in the active layer. The critical current density for silicon diodes is about two times lower than for the GaAs diodes. The intensive minority carrier storage in the N+ and P+ regions has a high influence on the voltage oscillation amplitude and frequency after the first plasma formation and extraction period. Oscillation damping takes place in the N+NP+ GaAs diode with the active layer thickness of less than 0.3 µm.
Keywords: simulation, avalanche diodes, mobility, minority carrier storage
PACS: 85.30.Mn

Si IR GaAs SUBMIKRONINIŲ TRAPATT DIODŲ MODELIAVIMAS
J. Vyšniauskas, J. Matukas
Fizikos fakultetas, Vilniaus Universitetas, Vilnius, Lietuva

Darbe pateikti plazmos susidarymo ir išsiurbimo procesų submikroniniuose silicio N+NP+, GaAs N+NP+ ir GaAs NM Šotkio TRAPATT (TRApped Plasma Avalanche Triggered Transit) dioduose modeliavimo rezultatai. GaAs TRAPATT diodai buvo modeliuoti pirmą kartą. Procesų modeliavimui buvo pasirinktas kvazi-hidrodinaminis modelis. Buvo naudojamas Synopsys TCAD Sentaurus programų paketas. Buvo įvertinta krūvininkų judrio priklausomybė nuo sklaidos fononais, priemaišinės sklaidos, krūvininkų-krūvininkų sklaidos, tarpslėninės sklaidos galio arsenide,  taip pat įvertintas judrio įsisotinimas stipriame elektriniame lauke. Buvo įskaityta keletas generacijos-rekombinacijos mechanizmų: smūginė jonizacija, Šoklio-Rido-Holo rekombinacija (SRH) su priklausančia nuo priemaišų krūvininkų gyvavimo trukme, tuneliavimas per gaudykles, tuneliavimas zona-zona, Ožė rekombinacija, spinduliuojamoji rekombinacija galio arsenide. Parodyta, kad plazmos formavimosi krizinės srovės tankis submikroniniuose dioduose didėja, mažinant aktyviojo sluoksnio storį, ir beveik nepriklauso nuo priemaišų tankio tame sluoksnyje. Silicio diodų krizinės srovės tankis apie du kartus mažesnis, negu galio arsenido diodų. Intensyvus šalutinių krūvininkų kaupimas N+ ir P+ srityse stipriai įtakoja įtampos virpesių amplitudę ir dažnį po pirmojo plazmos susidarymo ir išsiurbimo periodo. Virpesiai slopsta N+NP+ GaAs dioduose su aktyviosios srities storiu, mažesniu už 0,3 µm.

References / Nuorodos

[1] H.J. Prager, K.K.N. Chang, and S. Weisbrod, High-power, high-efficiency silicon avalanche diodes at ultra high frequencies, Proc. IEEE 55(4), 586–587 (1967),
http://dx.doi.org/10.1109/PROC.1967.5609
[2] D.F. Kostishack, UHF avalanche diode oscillator providing 400 Watts peak power and 75 percent efficiency, Proc. IEEE 58(8), 1282–1283 (1970),
http://dx.doi.org/10.1109/PROC.1970.7905
[3] S.G. Liu, 2000-W-GHz complementary TRAPATT diodes, in: International Solid-State Circuits Conference. Digest of Technical Papers. 1973 IEEE International (1973) pp. 124–125,
http://dx.doi.org/10.1109/ISSCC.1973.1155175
[4] S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, and S.N. Tsyranov, Generation of powerful microwave voltage oscillations in a diffused silicon diode, Semiconductors 47(5), 670–678 (2013),
http://dx.doi.org/10.1134/S1063782613050151
[5] R.L. Johnston, D.L. Scharfetter, and D.L. Bartelink, High-efficiency oscillations in germanium avalanche diodes below the transit-time frequency, Proc. IEEE 56(9), 1611–1613 (1968),
http://dx.doi.org/10.1109/PROC.1968.6672
[6] A.S. Clorfeine, R.J. Ikola, and L.S. Napoli, A theory for the high-efficiency mode of oscillation in avalanche diodes, RCA Review 30(3), 394–421 (1969),
[7] B.C. De Loach and D.L. Scharfetter, Device physics of TRAPATT oscillators, IEEE Trans. Electron Dev. 17(1) 9–21 (1970),
http://dx.doi.org/10.1109/T-ED.1970.16917
[8] R.S.Ying and N.B. Kramer, X-band silicon TRAPATT diodes, Proc. IEEE 58(8), 1285–1286 (1970),
http://dx.doi.org/10.1109/PROC.1970.7907
[9] C.H. Oxley, A.M. Howard, and J.J. Purcell, X-band TRAPATT amplifiers, Electron. Lett. 13(14), 416–417 (1977),
http://dx.doi.org/10.1049/el:19770303
[10] K.K.N. Chang, H. Kawamoto, H. J. Prager, J. Reynolds, A. Rosen, and V. A. Milkinas, High-efficiency avalanche diodes (TRAPATT) for phased-array radar systems, in: International Solid-State Circuits Conference. Digest of Technical Papers. 1973 IEEE International (1973) pp. 122–123, 207,
http://dx.doi.org/10.1109/ISSCC.1973.1155197
[11] H. Kawamoto, Gigahertz-rate 100-V pulse generator, IEEE J. Solid State Circ. 8(1), 63–66 (1973),
http://dx.doi.org/10.1109/JSSC.1973.1050346
[12] F.K. Vaitiekūnas, J.B. Vyšniauskas, Š.A. Kamaldinov, M.J. Filatov, and G.E. Šimėnas, Investigation of the pulse generator external circuit with TRAPATT diode, Tekhnika Sredstv Svyazi: Ser. Radioizmeritel'naya Tekhnika 35(1), 11–16 (1981) [in Russian]
[13] J. Vyšniauskas, Charge generation and transport in TRAPATT structures during the generation of nonsinusoidal oscillation, Doctoral thesis (Vilnius University, Vilnius, 1985) [in Russian]
[14] R.A. Kiehl and R.E. Hibray, High-speed digital microwave transmitter utilizing optical modulation, Proc. IEEE 66(6), 708–709 (1978),
http://dx.doi.org/10.1109/PROC.1978.10999
[15] H. Gottstein, Amplification and transformation of optical signals with a TRAPATT diode, Int. J. Electron. 56(5), 663–668 (1984),
http://dx.doi.org/10.1080/00207218408938860
[16] G. Šimėnas, Generation of pulsed and sinusoidal oscillation on avalanche diodes with optical generated carriers, Doctoral thesis (Vilnius university, Vilnius, 1991) [in Russian]
[17] J. Vyšniauskas and J. Matukas, Simulation of silicon n+np+, p+pn+ and Schottky TRAPATT diodes, Lith. J. Phys. 54(2), 80–88 (2014),
http://dx.doi.org/10.3952/physics.v54i2.2915
[18] F.K. Vaitiekūnas, J.B. Vyšniauskas, and M.V. Meilūnas, Influence of N+N region steepness to plasma formation and extraction processes in silicon TRAPATT diodes, Elektronnaya Tekhnika, Ser. Elektronika SVCh 361(1), 34–37 (1984) [in Russian]
[19] J. Vyšniauskas, V. Klimenko, J. Matukas, and V. Palenskis, Simulation of electron diffusion effect on plasma formation in silicon TRAPATT diodes, Lith. J. Phys. 52(3), 203–213 (2012),
http://dx.doi.org/10.3952/lithjphys.52312
[20] R.A. Kiehl, Dynamic minority-carrier storage in TRAPATT diodes, Solid State Electron. 23(3), 217–222 (1980),
http://dx.doi.org/10.1016/0038-1101(80)90005-2
[21] F. Vaitiekunas and J. Vyshniauskas, Differences of plasma formation and extraction in P+NN+ and N+PP+ silicon TRAPATT structures, Electron. Lett. 17(21), 822–824 (1981),
http://dx.doi.org/10.1049/el:19810573
[22] D.J. Roulston, N.D. Arora, and S.G. Chamberlain, Modeling and measurement of minority-carrier lifetime versus doping in diffused layers of n+-p silicon diodes, IEEE Trans. Electron Dev. 29(2), 284–291, (1982),
http://dx.doi.org/10.1109/T-ED.1982.20697
[23] A. Schenk, A model for the field and temperature dependence of Shockley–Read–Hall lifetimes in silicon, Solid State Electron. 35(11), 1585–1596 (1992),
http://dx.doi.org/10.1016/0038-1101(92)90184-E
[24] L. Huldt, N.G. Nilsson, and K.G. Svantesson, The temperature dependence of band-to-band Auger recombination in silicon, App. Phys. Lett. 35(10), 776–777 (1979),
http://dx.doi.org/10.1063/1.90974
[25] W. Lochmann and A. Haug, Phonon-assisted Auger recombination in Si with direct calculation of the overlap integrals, Solid State Commun. 35(7), 553–556 (1980),
http://dx.doi.org/10.1016/0038-1098(80)90896-0
[26] R. Häcker and A. Hangleiter, Intrinsic upper limits of the carrier lifetime in silicon, Journal of Appl. Phys. 75(11), 7570–7572 (1994),
http://dx.doi.org/10.1063/1.356634
[27] A. Schenk, Rigorous theory and simplified model of the band-to-band tunneling in silicon, Solid State Electron. 36(1), 19–34 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90065-X
[28] J.W. Slotboom and H.C. de Graaff, Measurements of bandgap narrowing in Si bipolar transistors, Solid State Electron. 19(10), 857–862 (1976),
http://dx.doi.org/10.1016/0038-1101(76)90043-5
[29] J.W. Slotboom and H.C. de Graaff, Bandgap narrowing in silicon bipolar transistors, IEEE Trans. Electron Dev. 24(8), 1123–1125 (1977)
http://dx.doi.org/10.1109/T-ED.1977.18889
[30] J.W. Slotboom, The pn-product in silicon, Solid State Electron. 20(4), 279–283 (1977),
http://dx.doi.org/10.1016/0038-1101(77)90108-3
[31] D.B.M. Klaassen, J.W. Slotboom, and H.C. de Graaff, Unified apparent bandgap narrowing in n- and p-type silicon, Solid State Electron. 35(2), 125–129 (1992),
http://dx.doi.org/10.1016/0038-1101(92)90051-D
[32] R. van Overstraeten and H. de Man, Measurement of the ionization rates in diffused silicon p-n junctions, Solid State Electron. 13(1), 583–608 (1970),
http://dx.doi.org/10.1016/0038-1101(70)90139-5
[33] G. Masetti, M. Severi, and S. Solmi, Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon, IEEE Trans. Electron Dev. 30(7), 764–769 (1983),
http://dx.doi.org/10.1109/T-ED.1983.21207
[34] N.D. Arora, J.R. Hauser, and D.J. Roulston, Electron and hole mobilities in silicon as a function of concentration and temperature, IEEE Trans. Electron Dev. 29(2), 292–295 (1982),
http://dx.doi.org/10.1109/T-ED.1982.20698
[35] S.C. Choo, Theory of a forward-biased diffused-junction P-L-N rectifier—Part I: Exact numerical solutions, IEEE Trans. Electron Dev. 19(8), 954–966 (1972),
http://dx.doi.org/10.1109/T-ED.1972.17525
[36] N.H. Fletcher, The high current limit for semiconductor junction devices, Proc. Inst. Radio Eng. 45(6), 862–872 (1957)
[37] C. Canali, G. Majni, R. Minder, and G. Ottaviani, Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature, IEEE Trans. Electron Dev. 22(11), 1045–1047 (1975),
http://dx.doi.org/10.1109/T-ED.1975.18267
[38] J.J. Barnes, R.J. Lomax, and G.I. Haddad, Finite-element simulation of GaAs MESFET’s with lateral doping profiles and submicron gates, IEEE Trans. Electron Dev. 23(9), 1042–1048 (1976),
http://dx.doi.org/10.1109/T-ED.1976.18533