J. Vyšniauskas and J. Matukas
Received 12 February 2014; revised 27 March 2014; accepted 29 May
2014
J. Vyšniauskas, J. Matukas
Fizikos fakultetas, Vilniaus Universitetas, Vilnius, Lietuva
Darbe pateikti plazmos
susidarymo ir išsiurbimo procesų submikroniniuose silicio N+NP+,
GaAs N+NP+ ir GaAs NM Šotkio TRAPATT
(TRApped Plasma Avalanche Triggered Transit) dioduose
modeliavimo rezultatai. GaAs TRAPATT diodai buvo modeliuoti
pirmą kartą. Procesų modeliavimui buvo pasirinktas
kvazi-hidrodinaminis modelis. Buvo naudojamas Synopsys TCAD
Sentaurus programų paketas. Buvo įvertinta krūvininkų judrio
priklausomybė nuo sklaidos fononais, priemaišinės sklaidos,
krūvininkų-krūvininkų sklaidos, tarpslėninės sklaidos galio
arsenide, taip pat įvertintas judrio įsisotinimas
stipriame elektriniame lauke. Buvo įskaityta keletas
generacijos-rekombinacijos mechanizmų: smūginė jonizacija,
Šoklio-Rido-Holo rekombinacija (SRH) su priklausančia nuo
priemaišų krūvininkų gyvavimo trukme, tuneliavimas per
gaudykles, tuneliavimas zona-zona, Ožė rekombinacija,
spinduliuojamoji rekombinacija galio arsenide. Parodyta, kad
plazmos formavimosi krizinės srovės tankis submikroniniuose
dioduose didėja, mažinant aktyviojo sluoksnio storį, ir beveik
nepriklauso nuo priemaišų tankio tame sluoksnyje. Silicio diodų
krizinės srovės tankis apie du kartus mažesnis, negu galio
arsenido diodų. Intensyvus šalutinių krūvininkų kaupimas N+
ir P+ srityse stipriai įtakoja įtampos virpesių
amplitudę ir dažnį po pirmojo plazmos susidarymo ir išsiurbimo
periodo. Virpesiai slopsta N+NP+ GaAs
dioduose su aktyviosios srities storiu, mažesniu už 0,3 µm.
References
/ Nuorodos
[1] H.J. Prager, K.K.N. Chang, and S. Weisbrod, High-power,
high-efficiency silicon avalanche diodes at ultra high
frequencies, Proc. IEEE
55(4), 586–587 (1967),
http://dx.doi.org/10.1109/PROC.1967.5609
[2] D.F. Kostishack, UHF avalanche diode oscillator providing
400 Watts peak power and 75 percent efficiency, Proc. IEEE
58(8),
1282–1283 (1970),
http://dx.doi.org/10.1109/PROC.1970.7905
[3] S.G. Liu, 2000-W-GHz complementary TRAPATT diodes, in:
International
Solid-State Circuits Conference. Digest of Technical Papers.
1973 IEEE International (1973) pp. 124–125,
http://dx.doi.org/10.1109/ISSCC.1973.1155175
[4] S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, and S.N.
Tsyranov, Generation of powerful microwave voltage oscillations
in a diffused silicon diode, Semiconductors
47(5),
670–678 (2013),
http://dx.doi.org/10.1134/S1063782613050151
[5] R.L. Johnston, D.L. Scharfetter, and D.L. Bartelink,
High-efficiency oscillations in germanium avalanche diodes below
the transit-time frequency, Proc. IEEE
56(9), 1611–1613
(1968),
http://dx.doi.org/10.1109/PROC.1968.6672
[6] A.S. Clorfeine, R.J. Ikola, and L.S. Napoli, A theory for
the high-efficiency mode of oscillation in avalanche diodes, RCA
Review
30(3), 394–421 (1969),
[7] B.C. De Loach and D.L. Scharfetter, Device physics of
TRAPATT oscillators, IEEE Trans. Electron Dev.
17(1)
9–21 (1970),
http://dx.doi.org/10.1109/T-ED.1970.16917
[8] R.S.Ying and N.B. Kramer, X-band silicon TRAPATT diodes,
Proc. IEEE
58(8), 1285–1286 (1970),
http://dx.doi.org/10.1109/PROC.1970.7907
[9] C.H. Oxley, A.M. Howard, and J.J. Purcell, X-band TRAPATT
amplifiers, Electron. Lett.
13(14), 416–417 (1977),
http://dx.doi.org/10.1049/el:19770303
[10] K.K.N. Chang, H. Kawamoto, H. J. Prager, J. Reynolds, A.
Rosen, and V. A. Milkinas, High-efficiency avalanche diodes
(TRAPATT) for phased-array radar systems, in:
International
Solid-State Circuits Conference. Digest of Technical Papers.
1973 IEEE International (1973) pp. 122–123, 207,
http://dx.doi.org/10.1109/ISSCC.1973.1155197
[11] H. Kawamoto, Gigahertz-rate 100-V pulse generator, IEEE J.
Solid State Circ.
8(1), 63–66 (1973),
http://dx.doi.org/10.1109/JSSC.1973.1050346
[12] F.K. Vaitiekūnas, J.B. Vyšniauskas, Š.A. Kamaldinov, M.J.
Filatov, and G.E. Šimėnas, Investigation of the pulse generator
external circuit with TRAPATT diode, Tekhnika Sredstv Svyazi:
Ser. Radioizmeritel'naya Tekhnika
35(1), 11–16 (1981)
[in Russian]
[13] J. Vyšniauskas,
Charge generation and transport in
TRAPATT structures during the generation of nonsinusoidal
oscillation, Doctoral thesis (Vilnius University, Vilnius,
1985) [in Russian]
[14] R.A. Kiehl and R.E. Hibray, High-speed digital microwave
transmitter utilizing optical modulation, Proc. IEEE
66(6),
708–709 (1978),
http://dx.doi.org/10.1109/PROC.1978.10999
[15] H. Gottstein, Amplification and transformation of optical
signals with a TRAPATT diode, Int. J. Electron.
56(5),
663–668 (1984),
http://dx.doi.org/10.1080/00207218408938860
[16] G. Šimėnas,
Generation of pulsed and sinusoidal
oscillation on avalanche diodes with optical generated
carriers, Doctoral thesis (Vilnius university, Vilnius,
1991) [in Russian]
[17] J. Vyšniauskas and J. Matukas, Simulation of silicon n
+np
+,
p
+pn
+ and Schottky TRAPATT diodes, Lith.
J. Phys.
54(2), 80–88 (2014),
http://dx.doi.org/10.3952/physics.v54i2.2915
[18] F.K. Vaitiekūnas, J.B. Vyšniauskas, and M.V. Meilūnas,
Influence of N
+N region steepness to plasma formation
and extraction processes in silicon TRAPATT diodes, Elektronnaya
Tekhnika, Ser. Elektronika SVCh
361(1), 34–37 (1984) [in
Russian]
[19] J. Vyšniauskas, V. Klimenko, J. Matukas, and V. Palenskis,
Simulation of electron diffusion effect on plasma formation in
silicon TRAPATT diodes, Lith. J. Phys.
52(3), 203–213
(2012),
http://dx.doi.org/10.3952/lithjphys.52312
[20] R.A. Kiehl, Dynamic minority-carrier storage in TRAPATT
diodes, Solid State Electron.
23(3), 217–222 (1980),
http://dx.doi.org/10.1016/0038-1101(80)90005-2
[21] F. Vaitiekunas and J. Vyshniauskas, Differences of plasma
formation and extraction in P
+NN
+ and N
+PP
+
silicon TRAPATT structures, Electron. Lett.
17(21),
822–824 (1981),
http://dx.doi.org/10.1049/el:19810573
[22] D.J. Roulston, N.D. Arora, and S.G. Chamberlain, Modeling
and measurement of minority-carrier lifetime versus doping in
diffused layers of n
+-p silicon diodes, IEEE Trans.
Electron Dev.
29(2), 284–291, (1982),
http://dx.doi.org/10.1109/T-ED.1982.20697
[23] A. Schenk, A model for the field and temperature dependence
of Shockley–Read–Hall lifetimes in silicon, Solid State
Electron.
35(11), 1585–1596 (1992),
http://dx.doi.org/10.1016/0038-1101(92)90184-E
[24] L. Huldt, N.G. Nilsson, and K.G. Svantesson, The
temperature dependence of band-to-band Auger recombination in
silicon, App. Phys. Lett.
35(10), 776–777 (1979),
http://dx.doi.org/10.1063/1.90974
[25] W. Lochmann and A. Haug, Phonon-assisted Auger
recombination in Si with direct calculation of the overlap
integrals, Solid State Commun.
35(7), 553–556 (1980),
http://dx.doi.org/10.1016/0038-1098(80)90896-0
[26] R. Häcker and A. Hangleiter, Intrinsic upper limits of the
carrier lifetime in silicon, Journal of Appl. Phys.
75(11),
7570–7572 (1994),
http://dx.doi.org/10.1063/1.356634
[27] A. Schenk, Rigorous theory and simplified model of the
band-to-band tunneling in silicon, Solid State Electron.
36(1),
19–34 (1993),
http://dx.doi.org/10.1016/0038-1101(93)90065-X
[28] J.W. Slotboom and H.C. de Graaff, Measurements of bandgap
narrowing in Si bipolar transistors, Solid State Electron.
19(10),
857–862 (1976),
http://dx.doi.org/10.1016/0038-1101(76)90043-5
[29] J.W. Slotboom and H.C. de Graaff, Bandgap narrowing in
silicon bipolar transistors, IEEE Trans. Electron Dev.
24(8),
1123–1125 (1977)
http://dx.doi.org/10.1109/T-ED.1977.18889
[30] J.W. Slotboom, The pn-product in silicon, Solid State
Electron.
20(4), 279–283 (1977),
http://dx.doi.org/10.1016/0038-1101(77)90108-3
[31] D.B.M. Klaassen, J.W. Slotboom, and H.C. de Graaff, Unified
apparent bandgap narrowing in n- and p-type silicon, Solid State
Electron.
35(2), 125–129 (1992),
http://dx.doi.org/10.1016/0038-1101(92)90051-D
[32] R. van Overstraeten and H. de Man, Measurement of the
ionization rates in diffused silicon p-n junctions, Solid State
Electron.
13(1), 583–608 (1970),
http://dx.doi.org/10.1016/0038-1101(70)90139-5
[33] G. Masetti, M. Severi, and S. Solmi, Modeling of carrier
mobility against carrier concentration in arsenic-, phosphorus-,
and boron-doped silicon, IEEE Trans. Electron Dev.
30(7),
764–769 (1983),
http://dx.doi.org/10.1109/T-ED.1983.21207
[34] N.D. Arora, J.R. Hauser, and D.J. Roulston, Electron and
hole mobilities in silicon as a function of concentration and
temperature, IEEE Trans. Electron Dev.
29(2), 292–295
(1982),
http://dx.doi.org/10.1109/T-ED.1982.20698
[35] S.C. Choo, Theory of a forward-biased diffused-junction
P-L-N rectifier—Part I: Exact numerical solutions, IEEE Trans.
Electron Dev.
19(8), 954–966 (1972),
http://dx.doi.org/10.1109/T-ED.1972.17525
[36] N.H. Fletcher, The high current limit for semiconductor
junction devices, Proc. Inst. Radio Eng.
45(6), 862–872
(1957)
[37] C. Canali, G. Majni, R. Minder, and G. Ottaviani, Electron
and hole drift velocity measurements in silicon and their
empirical relation to electric field and temperature, IEEE
Trans. Electron Dev.
22(11), 1045–1047 (1975),
http://dx.doi.org/10.1109/T-ED.1975.18267
[38] J.J. Barnes, R.J. Lomax, and G.I. Haddad, Finite-element
simulation of GaAs MESFET’s with lateral doping profiles and
submicron gates, IEEE Trans. Electron Dev.
23(9),
1042–1048 (1976),
http://dx.doi.org/10.1109/T-ED.1976.18533