[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2952

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 136–141 (2014)


FORMATION OF RECTANGULAR CHANNELS IN FUSED SILICA BY LASER-INDUCED CHEMICAL ETCHING
V. Stankevič and G. Račiukaitis
Center for Physical Sciences and Technology, Savanorių 231, LT- 02300, Vilnius, Lithuania
E-mail: valdemar.s@e-lasers.com

Received 17 April 2014; accepted 29 May 2014

In this paper, we report results of our research on formation of micro-channels with the rectangular cross-section inside bulk fused silica. The selective etching of channels was performed by the technique called the femtosecond laser induced chemical etching. Hydrofluoric acid was used as an agent for selective removal of laser-modified regions in fused silica samples. The method of the channel cross-section control based on multiple scanning is proposed. The effect of scanning speed, laser pulse energy and polarization on the etching selectivity was investigated and discussed.
Keywords: femtosecond microfabrication, micro-channels, selective chemical etching, fused silica, internal modification
PACS: 06.60.Jn, 34.80.Qb, 42.62.Cf, 79.20.Ws

STAČIAKAMPIŲ KANALŲ FORMAVIMAS LAZERIU INICIJUOJANT CHEMINĮ ĖSDINIMĄ LYDYTAME KVARCE

V. Stankevič, G. Račiukaitis
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Šiame darbe pateikiami mūsų tyrimų rezultatai, formuojant stačiakampio skerspjūvio kanalus tūriniame lydytame kvarce. Selektyvus cheminis ėsdinimas kvarce buvo inicijuojamas apšvita femtosekundiniu lazeriu. Lazeriu modifikuotos bandinio sritys buvo lokaliai išėsdinamos fluoro rūgštimi. Pasiūlytas naujas metodas mikrokanalų su norimu skerspjūviu formavimui, panaudojant daugkartinį kanalo skenavimą. Buvo ištirta cheminio ėsdinimo selektyvumo priklausomybė nuo lazerio spindulio skenavimo greičio, lazerio impulso energijos ir poliarizacijos ir aptariami galimi modifikavimo procesai, sukeliantys nemonotonišką selektyvumo kitimą.

References / Nuorodos

[1] R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M. Marr, P. Bado, M.A. Dugan, and A.A. Said, Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping, Lab Chip 6, 422–426 (2006),
http://dx.doi.org/10.1039/b512576f
[2] S. Nolte, M. Will, J. Burghoff, and A. Tuennermann, Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics, Appl. Phys. A Mater. Sci. Process. 77, 109–111 (2003),
http://dx.doi.org/10.1007/s00339-003-2088-6
[3] R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P. Laporta, D. Polli, S. De Silvestri, and G. Cerullo, Femtosecond writing of active optical waveguides with astigmatically shaped beams, J. Opt. Soc. Am. B 20, 1559–1567 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001559
[4] Y. Bellouard, A. Said, M. Dugan, and P. Bado, Monolithic integration in fused silica: When fluidics, mechanics and optics meet in a single substrate, in: International Symposium on Optomechatronic Technologies (2009) pp. 445–450,
http://dx.doi.org/10.1109/ISOT.2009.5326161
[5] Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, eds. R. Osellame, G. Cerullo, and R. Ramponi (Springer-Verlag, Berlin, Heidelberg, 2012),
http://dx.doi.org/10.1007/978-3-642-23366-1
[6] R.R. Gattass and E. Mazur, Femtosecond laser micromachining in transparent materials, Nature Photonics 2, 219–225 (2008),
http://dx.doi.org/10.1038/nphoton.2008.47
[7] R. Taylor, C. Hnatovsky, and E. Simova, Applications of femtosecond laser induced self–organized planar nanocracks inside fused silica glass, Laser Photonics Rev. 2, 26–46 (2008),
http://dx.doi.org/10.1002/lpor.200710031
[8] K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer, Ultrafast processes for bulk modification of transparent materials, MRS Bull. 31, 620 (2006),
http://dx.doi.org/10.1557/mrs2006.159
[9] C. Hnatovsky, R. S. Taylor, E. Simova, P.P. Rayeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching, Appl. Phys. A 84, 47–61 (2006),
http://dx.doi.org/10.1007/s00339-006-3590-4
[10] E. Glezer and E. Mazur, Ultrafast-laser driven micro-explosions in transparent materials, Appl. Phys. Lett. 71, 882–884 (1997),
http://dx.doi.org/10.1063/1.119677
[11] S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T. Tikhonchuk, Laser-induced microexplosion confined in the bulk of a sapphire crystal: evidence of miltimegabar pressures, Phys. Rev. Lett. 96, 166101 (2006),
http://dx.doi.org/10.1103/PhysRevLett.96.166101
[12] A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, and H. Misawa, Femtosecond laser-assisted three-dimensional microfabrication in silica, Opt. Lett. 26, 277–279 (2001),
http://dx.doi.org/10.1364/OL.26.000277
[13] Y. Bellouard, A. Said, M. Dugan, and P. Bado, Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching, Opt. Express 12, 2120–2129 (2004),
http://dx.doi.org/10.1364/OPEX.12.002120
[14] C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica, Opt. Lett. 30, 1867–1869 (2005),
http://dx.doi.org/10.1364/OL.30.001867
[15] Sh. Rajesh and Y. Bellouard, Towards fast femtosecond laser micromachining of fused silica: The effect of deposited energy, Opt. Express 18, 21490–21497 (2010),
http://dx.doi.org/10.1364/OE.18.021490
[16] S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira, Examination of etching agent and etching mechanism on femtosecond laser microfabrication of channels inside vitreous silica substrates, J. Phys. Chem. C 113, 11560–11566 (2009),
http://dx.doi.org/10.1021/jp900915r