FORMATION OF RECTANGULAR
CHANNELS IN FUSED SILICA BY LASER-INDUCED CHEMICAL ETCHING
V. Stankevič and G. Račiukaitis
Center for Physical Sciences and Technology, Savanorių 231,
LT- 02300, Vilnius, Lithuania
E-mail: valdemar.s@e-lasers.com
Received 17 April 2014; accepted 29 May 2014
In this paper, we report results of our
research on formation of micro-channels with the rectangular
cross-section inside bulk fused silica. The selective
etching of channels was performed by the technique called
the femtosecond laser induced chemical etching. Hydrofluoric
acid was used as an agent for selective removal of
laser-modified regions in fused silica samples. The method
of the channel cross-section control based on multiple
scanning is proposed. The effect of scanning speed, laser
pulse energy and polarization on the etching selectivity was
investigated and discussed.
Keywords: femtosecond
microfabrication, micro-channels, selective chemical etching,
fused silica, internal modification
PACS: 06.60.Jn,
34.80.Qb, 42.62.Cf, 79.20.Ws
STAČIAKAMPIŲ KANALŲ FORMAVIMAS
LAZERIU INICIJUOJANT CHEMINĮ ĖSDINIMĄ LYDYTAME KVARCE
V. Stankevič, G. Račiukaitis
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
Šiame darbe pateikiami mūsų
tyrimų rezultatai, formuojant stačiakampio skerspjūvio kanalus
tūriniame lydytame kvarce. Selektyvus cheminis ėsdinimas
kvarce buvo inicijuojamas apšvita femtosekundiniu lazeriu.
Lazeriu modifikuotos bandinio sritys buvo lokaliai išėsdinamos
fluoro rūgštimi. Pasiūlytas naujas metodas mikrokanalų su
norimu skerspjūviu formavimui, panaudojant daugkartinį kanalo
skenavimą. Buvo ištirta cheminio ėsdinimo selektyvumo
priklausomybė nuo lazerio spindulio skenavimo greičio, lazerio
impulso energijos ir poliarizacijos ir aptariami galimi
modifikavimo procesai, sukeliantys nemonotonišką selektyvumo
kitimą.
References
/
Nuorodos
[1] R.W. Applegate Jr., J. Squier, T. Vestad, J. Oakey, D.W.M.
Marr, P. Bado, M.A. Dugan, and A.A. Said, Microfluidic sorting
system based on optical waveguide integration and diode laser
bar trapping, Lab Chip 6, 422–426 (2006),
http://dx.doi.org/10.1039/b512576f
[2] S. Nolte, M. Will, J. Burghoff, and A. Tuennermann,
Femtosecond waveguide writing: a new avenue to three-dimensional
integrated optics, Appl. Phys. A Mater. Sci. Process.
77,
109–111 (2003),
http://dx.doi.org/10.1007/s00339-003-2088-6
[3] R. Osellame, S. Taccheo, M. Marangoni, R. Ramponi, P.
Laporta, D. Polli, S. De Silvestri, and G. Cerullo, Femtosecond
writing of active optical waveguides with astigmatically shaped
beams, J. Opt. Soc. Am. B
20, 1559–1567 (2003),
http://dx.doi.org/10.1364/JOSAB.20.001559
[4] Y. Bellouard, A. Said, M. Dugan, and P. Bado,
Monolithic integration in fused silica: When fluidics, mechanics
and optics meet in a single substrate, in:
International
Symposium on Optomechatronic Technologies (2009) pp.
445–450,
http://dx.doi.org/10.1109/ISOT.2009.5326161
[5]
Femtosecond Laser Micromachining: Photonic and
Microfluidic Devices in Transparent Materials, eds. R.
Osellame, G. Cerullo, and R. Ramponi (Springer-Verlag, Berlin,
Heidelberg, 2012),
http://dx.doi.org/10.1007/978-3-642-23366-1
[6] R.R. Gattass and E. Mazur, Femtosecond laser micromachining
in transparent materials, Nature Photonics
2, 219–225
(2008),
http://dx.doi.org/10.1038/nphoton.2008.47
[7] R. Taylor, C. Hnatovsky, and E. Simova, Applications of
femtosecond laser induced self–organized planar nanocracks
inside fused silica glass, Laser Photonics Rev.
2, 26–46
(2008),
http://dx.doi.org/10.1002/lpor.200710031
[8] K. Itoh, W. Watanabe, S. Nolte, and C. B. Schaffer,
Ultrafast processes for bulk modification of transparent
materials, MRS Bull.
31, 620 (2006),
http://dx.doi.org/10.1557/mrs2006.159
[9] C. Hnatovsky, R. S. Taylor, E. Simova, P.P. Rayeev, D. M.
Rayner, V. R. Bhardwaj, and P. B. Corkum, Fabrication of
microchannels in glass using focused femtosecond laser radiation
and selective chemical etching, Appl. Phys. A
84, 47–61
(2006),
http://dx.doi.org/10.1007/s00339-006-3590-4
[10] E. Glezer and E. Mazur, Ultrafast-laser driven
micro-explosions in transparent materials, Appl. Phys. Lett.
71,
882–884 (1997),
http://dx.doi.org/10.1063/1.119677
[11] S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. G.
Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. T.
Tikhonchuk, Laser-induced microexplosion confined in the bulk of
a sapphire crystal: evidence of miltimegabar pressures, Phys.
Rev. Lett.
96, 166101 (2006),
http://dx.doi.org/10.1103/PhysRevLett.96.166101
[12] A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S.
Matsuo, and H. Misawa, Femtosecond laser-assisted
three-dimensional microfabrication in silica, Opt. Lett.
26,
277–279 (2001),
http://dx.doi.org/10.1364/OL.26.000277
[13] Y. Bellouard, A. Said, M. Dugan, and P. Bado,
Fabrication of high-aspect ratio, micro-fluidic channels and
tunnels using femtosecond laser pulses and chemical etching,
Opt. Express
12, 2120–2129 (2004),
http://dx.doi.org/10.1364/OPEX.12.002120
[14] C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj,
D. M. Rayner, and P. B. Corkum, Polarization-selective etching
in femtosecond laser-assisted microfluidic channel fabrication in
fused silica, Opt. Lett.
30, 1867–1869 (2005),
http://dx.doi.org/10.1364/OL.30.001867
[15] Sh. Rajesh and Y. Bellouard, Towards fast femtosecond
laser micromachining of fused silica: The effect of deposited
energy, Opt. Express
18, 21490–21497 (2010),
http://dx.doi.org/10.1364/OE.18.021490
[16] S. Kiyama, S. Matsuo, S. Hashimoto, and Y. Morihira,
Examination of etching agent and etching mechanism on
femtosecond laser microfabrication of channels inside vitreous
silica substrates, J. Phys. Chem. C
113, 11560–11566
(2009),
http://dx.doi.org/10.1021/jp900915r