P. Stanislovaitis, A. Matijošius, V. Šetkus, and V.
Smilgevičius
In this work we investigate the light
patterns generated by paraxial radial and azimuth polarization
beams in type II nonlinear crystal. We show that in paraxial
case second harmonic intensity pattern generated by the
radial/azimuth polarization beams can be expressed similarly
to Hermite-Gaussian HG
11 mode. In addition,
numerical simulations were carried out, taking into account
diraction, walk-off, and pump depletion. The numerical
simulations have shown that even with pump depletion, the
resulting second harmonic beam consists of 4 maxima. Also
experimental results are presented, which conrm theoretical
predictions. Interference patterns indicate phase shifts of
between neighboring maxima.
Keywords: radial /
azimuthal polarization beams, Hermite-Gaussian mode, second
harmonic generation
PACS: 42.60.Jf,
42.65.Ky, 42.79.-e
P. Stanislovaitis, A.
Matijošius, V. Šetkus, and V. Smilgevičius
Vilniaus universiteto Fizikos fakultetas, Kvantinės
elektronikos katedra, Vilnius, Lietuva
Darbe ištirti antrosios
harmonikos generavimo ypatumai antrojo tipo netiesiniame
kristale, žadinant ją radialinės / azimutinės poliarizacijos
kaupinimo pluoštais. Teoriškai parodyta, kad paraksialiniu
atveju generuojamos antrosios harmonikos intensyvumo skirstinys,
nepaisant kaupinimo pluoštų nuskurdinimo bei
apertūrinio-diafragminio reiškinio, yra išreiškiamas
Ermito-Gauso HG11 moda. Atlikus skaitinius modeliavimus,
parodyta, kad antrosios harmonikos intensyvumo skirstinys, net
ir įskaitant difrakciją, kaupinimo pluoštų nuskurdinimą ir
apertūrinį-diafragminį reiškinį, susideda iš keturių maksimumų.
Eksperimentinių tyrimų rezultatai patvirtina teorinių
skaičiavimų rezultatus. Remiantis užregistruotų interferencinių
skirstinių analize nustatyta, kad fazių skirtumas tarp gretimų
antrosios harmonikos intensyvumo skirstinio maksimumų yra
lygus
radianų.
References
/
Nuorodos
[1] D. Pohl, Operation of a ruby laser in the purely transverse
electric mode TE
01, Appl. Phys. Lett.
20(7),
266–267 (1972),
http://dx.doi.org/10.1063/1.1654142
[2] S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs,
Focusing light to a tighter spot, Opt. Commun.
179(16),
1–7 (2000),
http://dx.doi.org/10.1016/S0030-4018(99)00729-4
[3] T. Grosjean and D. Courjon, Smallest focal spots, Opt.
Commun.
272(2), 314–319 (2007),
http://dx.doi.org/10.1016/j.optcom.2006.11.043
[4] R. Dorn, S. Quabis, and G. Leuchs, Sharper focus for a
radially polarized light beam, Phys. Rev. Lett.
91(23),
233901 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.233901
[5] V. G. Niziev and A. V. Nesterov, Influence of beam
polarization on laser cutting efficiency, J. Phys. D Appl.
Phys.
32(13), 1455 (1999),
http://dx.doi.org/10.1088/0022-3727/32/13/304
[6] M. Meier, V. Romano, and T. Feurer, Material processing with
pulsed radially and azimuthally polarized laser radiation, Appl.
Phys. A
86(3), 329–334 (2007),
http://dx.doi.org/10.1007/s00339-006-3784-9
[7] H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato,
Calculation of optical trapping forces on a dielectric sphere in
the ray optics regime produced by a radially polarized laser
beam, Opt. Lett.
32(13), 1839–1841 (2007),
http://dx.doi.org/10.1364/OL.32.001839
[8] Q. Zhan, Trapping metallic Rayleigh particles with radial
polarization, Opt. Express
12(15), 3377–3382 (2004),
http://dx.doi.org/10.1364/OPEX.12.003377
[9] G. M. Lerman and U. Levy, Radial polarization
interferometer, Opt. Express
17(25), 23234–23246
(2009),
http://dx.doi.org/10.1364/OE.17.023234
[10] M. O. Scully and M. S. Zubairy, Simple laser accelerator:
Optics and particle dynamics, Phys. Rev. A
44(4),
2656–2663 (1991),
http://dx.doi.org/10.1103/PhysRevA.44.2656
[11] S. Carrasco, B. E. A. Saleh, M. C. Teich, and J. T.
Fourkas, Second- and third-harmonic generation with vector
Gaussian beams, J. Opt. Soc. Am. B
23(10), 2134–2141
(2006),
http://dx.doi.org/10.1364/JOSAB.23.002134
[12] A. Ohtsu, Second-harmonic wave induced by vortex beams with
radial and azimuthal polarizations, Opt. Commun.
283(20),
3831–3837 (2010),
http://dx.doi.org/10.1016/j.optcom.2010.04.018
[13] Q. Zhan, Cylindrical vector beams: from mathematical
concepts to applications, Adv. Opt. Photon.
1(1), 1–57
(2009),
http://dx.doi.org/10.1364/AOP.1.000001
[14] M. Beresna, M. Gecevičius, P. G. Kazansky and T. Gertus,
Radially polarized optical vortex converter created by
femtosecond laser nanostructuring of glass, Appl. Phys. Lett.,
98(20),
201101 (2011),
http://dx.doi.org/10.1063/1.3590716
[15] Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao,
Self-organized nanogratings in glass irradiated by ultrashort
light pulses, Phys. Rev. Lett.
91(24), 247405 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.247405
[16] M. Beresna, M. Gecevičius, and P. G. Kazansky,
Polarization sensitive elements fabricated by femtosecond laser
nanostructuring of glass, Opt. Mater. Express
1(4),
783–795 (2011),
http://dx.doi.org/10.1364/OME.1.000783