[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2953

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 142–149 (2014)


PECULIARITIES OF SECOND HARMONIC GENERATED BY PARAXIAL BEAMS WITH RADIAL/AZIMUTHAL POLARIZATION IN TYPE II NONLINEAR CRYSTAL
P. Stanislovaitis, A. Matijošius, V. Š’etkus, and V. Smilgevičius
Department of Quantum Electronics, Faculty of Physics, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania
E-mail: paulius.stanislovaitis@.stud.vu.lt

Received 17 April 2014; accepted 29 May 2014

In this work we investigate the light patterns generated by paraxial radial and azimuth polarization beams in type II nonlinear crystal. We show that in paraxial case second harmonic intensity pattern generated by the radial/azimuth polarization beams can be expressed similarly to Hermite-Gaussian HG11 mode. In addition, numerical simulations were carried out, taking into account diraction, walk-off, and pump depletion. The numerical simulations have shown that even with pump depletion, the resulting second harmonic beam consists of 4 maxima. Also experimental results are presented, which conrm theoretical predictions. Interference patterns indicate phase shifts of π\pi between neighboring maxima.
Keywords: radial / azimuthal polarization beams, Hermite-Gaussian mode, second harmonic generation
PACS: 42.60.Jf, 42.65.Ky, 42.79.-e

ANTROS HARMONIKOS GENERAVIMO PARAKSIALINIAIS RADIALINĖS / AZIMUTINĖS POLIARIZACIJOS PLUOŠTAIS ANTROJO TIPO NETIESINIAME KRISTALE YPATUMAI
P. Stanislovaitis, A. Matijošius, V. Š’etkus, and V. Smilgevičius
Vilniaus universiteto Fizikos fakultetas, Kvantinės elektronikos katedra, Vilnius, Lietuva

Darbe ištirti antrosios harmonikos generavimo ypatumai antrojo tipo netiesiniame kristale, žadinant ją radialinės / azimutinės poliarizacijos kaupinimo pluoštais. Teoriškai parodyta, kad paraksialiniu atveju generuojamos antrosios harmonikos intensyvumo skirstinys, nepaisant kaupinimo pluoštų nuskurdinimo bei apertūrinio-diafragminio reiškinio, yra išreiškiamas Ermito-Gauso HG11 moda. Atlikus skaitinius modeliavimus, parodyta, kad antrosios harmonikos intensyvumo skirstinys, net ir įskaitant difrakciją, kaupinimo pluoštų nuskurdinimą ir apertūrinį-diafragminį reiškinį, susideda iš keturių maksimumų. Eksperimentinių tyrimų rezultatai patvirtina teorinių skaičiavimų rezultatus. Remiantis užregistruotų interferencinių skirstinių analize nustatyta, kad fazių skirtumas tarp gretimų antrosios harmonikos intensyvumo skirstinio maksimumų yra lygus π\pi radianų.

References / Nuorodos

[1] D. Pohl, Operation of a ruby laser in the purely transverse electric mode TE01, Appl. Phys. Lett. 20(7), 266–267 (1972),
http://dx.doi.org/10.1063/1.1654142
[2] S. Quabis, R. Dorn, M. Eberler, O. Glöckl, and G. Leuchs, Focusing light to a tighter spot, Opt. Commun. 179(16), 1–7 (2000),
http://dx.doi.org/10.1016/S0030-4018(99)00729-4
[3] T. Grosjean and D. Courjon, Smallest focal spots, Opt. Commun. 272(2), 314–319 (2007),
http://dx.doi.org/10.1016/j.optcom.2006.11.043
[4] R. Dorn, S. Quabis, and G. Leuchs, Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91(23), 233901 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.233901
[5] V. G. Niziev and A. V. Nesterov, Influence of beam polarization on laser cutting efficiency, J. Phys. D Appl. Phys. 32(13), 1455 (1999),
http://dx.doi.org/10.1088/0022-3727/32/13/304
[6] M. Meier, V. Romano, and T. Feurer, Material processing with pulsed radially and azimuthally polarized laser radiation, Appl. Phys. A 86(3), 329–334 (2007),
http://dx.doi.org/10.1007/s00339-006-3784-9
[7] H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam, Opt. Lett. 32(13), 1839–1841 (2007),
http://dx.doi.org/10.1364/OL.32.001839
[8] Q. Zhan, Trapping metallic Rayleigh particles with radial polarization, Opt. Express 12(15), 3377–3382 (2004),
http://dx.doi.org/10.1364/OPEX.12.003377
[9] G. M. Lerman and U. Levy, Radial polarization interferometer, Opt. Express 17(25), 23234–23246 (2009),
http://dx.doi.org/10.1364/OE.17.023234
[10] M. O. Scully and M. S. Zubairy, Simple laser accelerator: Optics and particle dynamics, Phys. Rev. A 44(4), 2656–2663 (1991),
http://dx.doi.org/10.1103/PhysRevA.44.2656
[11] S. Carrasco, B. E. A. Saleh, M. C. Teich, and J. T. Fourkas, Second- and third-harmonic generation with vector Gaussian beams, J. Opt. Soc. Am. B 23(10), 2134–2141 (2006),
http://dx.doi.org/10.1364/JOSAB.23.002134
[12] A. Ohtsu, Second-harmonic wave induced by vortex beams with radial and azimuthal polarizations, Opt. Commun. 283(20), 3831–3837 (2010),
http://dx.doi.org/10.1016/j.optcom.2010.04.018
[13] Q. Zhan, Cylindrical vector beams: from mathematical concepts to applications, Adv. Opt. Photon. 1(1), 1–57 (2009),
http://dx.doi.org/10.1364/AOP.1.000001
[14] M. Beresna, M. Gecevičius, P. G. Kazansky and T. Gertus, Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass, Appl. Phys. Lett., 98(20), 201101 (2011),
http://dx.doi.org/10.1063/1.3590716
[15] Y. Shimotsuma, P. G. Kazansky, J. Qiu, and K. Hirao, Self-organized nanogratings in glass irradiated by ultrashort light pulses, Phys. Rev. Lett. 91(24), 247405 (2003),
http://dx.doi.org/10.1103/PhysRevLett.91.247405
[16] M. Beresna, M. Gecevičius, and P. G. Kazansky, Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass, Opt. Mater. Express 1(4), 783–795 (2011),
http://dx.doi.org/10.1364/OME.1.000783