[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2954

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 150–154 (2014)


HIGH AVERAGE POWER EFFECTIVE PUMP SOURCE AT 1 kHz REPETITION RATE FOR OPCPA SYSTEM
K. Michailovasa,b, V. Smilgevičiusb, and A. Michailovasa,c
aEKSPLA, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
bLaser Research Centre, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
cCenter for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: k.michailovas@ekspla.com

Received 17 April 2014; accepted 29 May 2014

A laser amplifier set-up that can be used as an effective pump source for an optical parametric chirped pulse amplification system is presented in this paper. 1-mJ 48-ps seed pulses were amplified to the energy of 80 mJ. The system operated at 1 kHz repetition rate resulting in an average output power of about 80 W. The results of enhancement of beam focusability by use of deformable mirror are presented.
Keywords: picosecond pulses amplifier, Nd:YAG, diode pumped, OPCPA
PACS: 42.55.Xi

EFEKTYVUS DIDELĖS VIDUTINĖS GALIOS 1 kHz PASIKARTOJIMO DAŽNIO KAUPINIMO ŠALTINIS OPCPA SISTEMAI
K. Michailovasa,b, V. Smilgevičiusb, A. Michailovasa,c
aEKSPLA, Vilnius, Lietuva
bVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
cFizinių ir technologijos mokslų centras, Vilnius, Lietuva

Pristatoma lazerinė stiprinimo sistema, kuri gali būti efektyviu kaupinimo šaltiniu optiniam parametriniam faziškai moduliuotų („čirpuotų“) šviesos impulsų stiprintuvui. Sistemos vidutinė išėjimo galia buvo apie 80 W, jai veikiant 1 kHz pasikartojimo dažniu ir stiprinant 1 mJ 48 ps trukmės impulsus. Pateikiami pluošto fokusuojamumo pagerinimo deformuojamo veidrodžio pagalba rezultatai.

References / Nuorodos

[1] M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Hermann, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, Petawatt laser pulses, Opt. Lett. 24(3), 160–162 (1999),
http://dx.doi.org/10.1364/OL.24.000160
[2] A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal, Opt. Commun. 88, 437–440 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[3] D. Herrmann, L. Veisz, F. Tavella, K. Schmid, R. Tautz, A. Buck, V. Pervak, and F. Krausz, Generation of 8 fs, 125 mJ pulses through optical parametric chirped pulse amplification, in: Advanced Solid State Photonics, paper WA3 (Optical Society of America, 2009),
http://dx.doi.org/10.1364/ASSP.2009.WA3
[4] S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, 5-fs, multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz, Opt. Express 16(19), 14341 (2008),
http://dx.doi.org/10.1364/OE.16.014341
[5] S. Witte, R.Th. Zinkstok, A.L. Wolf, W. Hogerworst, W. Ubachs, and K.S.E. Eikema, A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification, Opt. Express 14(18), 8168–8177 (2006),
http://dx.doi.org/10.1364/OE.14.008168
[6] M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, and S. Karsch, High-energy, diode-pumped, nanosecond Yb:YAG MOPA system, Opt. Express 16(6), 3674–3679 (2008),
http://dx.doi.org/10.1364/OE.16.003674
[7] S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S.A. Trushin, Z. Major, F. Krausz, and S. Karsch, High energy picosecond Yb:YAG CPA system at 10 Hz repetition rate for pumping optical parametric amplifiers, Opt. Express 19(6), 5357–5363 (2011),
http://dx.doi.org/10.1364/OE.19.005357
[8] K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, and F.X. Kärtne, High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm pumped by a picoseconds cryogenic Yb:YAG laser, Opt. Express 19(16), 15538–15548 (2011),
http://dx.doi.org/10.1364/OE.19.015538
[9] J. Rothhardt, S. Hädrich, T. Gottschall, T. Clausnitzer, J. Limpert, and A. Tünnermann, Compact fiber amplifier pumped OPCPA system delivering Gigawatt peak power 35 fs pulses, Opt. Express 17(26), 24130–24136 (2009),
http://dx.doi.org/10.1364/OE.17.024130
[10] M. Hemmer, A. Vaupel, B. Webb, and M. Richardson, Multi-kHz, multi-mJ, phase stabilised, OPCPA amplifier system, Proc. SPIE 7578, 757818 (2010),
http://dx.doi.org/10.1117/12.842893
[11] J.S. Shin, S. Park, and H.J. Kong, Compensation of the thermally induced depolarization in a double-pass Nd:YAG rod amplifier with a stimulated Brillouin scattering phase conjugate mirror, Opt. Commun. 283, 2402–2405 (2010),
http://dx.doi.org/10.1016/j.optcom.2010.02.013
[12] J. Bunkenberg, J. Boles, D.C. Brown, J. Eastman, J. Hoose, R. Hopkins, L. Iwan, S.D. Jacobs, J.H. Kelly, S. Kumpan, S. Letzring, D. Lonobile, L.D. Lund, G. Mourou, S. Refermat, W. Seka, J.M. Soures, and K. Walse, The omega high-power phosphate-glass system: design and performance, IEEE J. Quantum Electron. 17(9), 1620–1628 (1981),
http://dx.doi.org/10.1109/JQE.1981.1071344
[13] Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U. Wittrock, A novel approach for compensation of birefringence in cylindrical Nd: YAG rods, Opt. Quantum Electron. 28(1), 57–69 (1996),
http://dx.doi.org/10.1007/BF00578551