K. Michailovas
, V. Smilgevičius
K. Michailovasa,b, V.
Smilgevičiusb, A. Michailovasa,c
aEKSPLA, Vilnius, Lietuva
bVilniaus universiteto Lazerinių tyrimų
centras, Vilnius, Lietuva
cFizinių ir technologijos mokslų centras,
Vilnius, Lietuva
Pristatoma lazerinė stiprinimo
sistema, kuri gali būti efektyviu kaupinimo šaltiniu optiniam
parametriniam faziškai moduliuotų („čirpuotų“) šviesos impulsų
stiprintuvui. Sistemos vidutinė išėjimo galia buvo apie 80 W,
jai veikiant 1 kHz pasikartojimo dažniu ir stiprinant 1 mJ 48 ps
trukmės impulsus. Pateikiami pluošto fokusuojamumo pagerinimo
deformuojamo veidrodžio pagalba rezultatai.
References
/
Nuorodos
[1] M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A.
Britten, C. Brown, S. Hermann, B. Golick, M. Kartz, J. Miller,
H. T. Powell, M. Vergino, and V. Yanovsky, Petawatt laser
pulses, Opt. Lett.
24(3), 160–162 (1999),
http://dx.doi.org/10.1364/OL.24.000160
[2] A. Dubietis, G. Jonušauskas, and A. Piskarskas, Powerful
femtosecond pulse generation by chirped and stretched pulse
parametric amplification in BBO crystal, Opt. Commun.
88,
437–440 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90070-8
[3] D. Herrmann, L. Veisz, F. Tavella, K. Schmid, R. Tautz, A.
Buck, V. Pervak, and F. Krausz, Generation of 8 fs, 125 mJ
pulses through optical parametric chirped pulse amplification,
in:
Advanced Solid State Photonics, paper WA3 (Optical
Society of America, 2009),
http://dx.doi.org/10.1364/ASSP.2009.WA3
[4] S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y.
Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, 5-fs,
multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped
by a 450-nm source at 1 kHz, Opt. Express
16(19), 14341
(2008),
http://dx.doi.org/10.1364/OE.16.014341
[5] S. Witte, R.Th. Zinkstok, A.L. Wolf, W. Hogerworst, W.
Ubachs, and K.S.E. Eikema, A source of 2 terawatt, 2.7 cycle
laser pulses based on noncollinear optical parametric chirped
pulse amplification, Opt. Express
14(18),
8168–8177 (2006),
http://dx.doi.org/10.1364/OE.14.008168
[6] M. Siebold, J. Hein, C. Wandt, S. Klingebiel, F. Krausz, and
S. Karsch, High-energy, diode-pumped, nanosecond Yb:YAG MOPA
system, Opt. Express
16(6), 3674–3679 (2008),
http://dx.doi.org/10.1364/OE.16.003674
[7] S. Klingebiel, C. Wandt, C. Skrobol, I. Ahmad, S.A. Trushin,
Z. Major, F. Krausz, and S. Karsch, High energy picosecond
Yb:YAG CPA system at 10 Hz repetition rate for pumping optical
parametric amplifiers, Opt. Express
19(6), 5357–5363
(2011),
http://dx.doi.org/10.1364/OE.19.005357
[8] K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G.
Cirmi, A. Sell, E. Granados, P. Keathley, and F.X. Kärtne,
High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 μm
pumped by a picoseconds cryogenic Yb:YAG laser, Opt. Express
19(16),
15538–15548 (2011),
http://dx.doi.org/10.1364/OE.19.015538
[9] J. Rothhardt, S. Hädrich, T. Gottschall, T. Clausnitzer, J.
Limpert, and A. Tünnermann, Compact fiber amplifier pumped OPCPA
system delivering Gigawatt peak power 35 fs pulses, Opt. Express
17(26), 24130–24136 (2009),
http://dx.doi.org/10.1364/OE.17.024130
[10] M. Hemmer, A. Vaupel, B. Webb, and M. Richardson,
Multi-kHz, multi-mJ, phase stabilised, OPCPA amplifier system,
Proc. SPIE
7578, 757818 (2010),
http://dx.doi.org/10.1117/12.842893
[11] J.S. Shin, S. Park, and H.J. Kong, Compensation of the
thermally induced depolarization in a double-pass Nd:YAG rod
amplifier with a stimulated Brillouin scattering phase conjugate
mirror, Opt. Commun.
283, 2402–2405 (2010),
http://dx.doi.org/10.1016/j.optcom.2010.02.013
[12] J. Bunkenberg, J. Boles, D.C. Brown, J. Eastman, J. Hoose,
R. Hopkins, L. Iwan, S.D. Jacobs, J.H. Kelly, S. Kumpan, S.
Letzring, D. Lonobile, L.D. Lund, G. Mourou, S. Refermat, W.
Seka, J.M. Soures, and K. Walse, The omega high-power
phosphate-glass system: design and performance, IEEE J. Quantum
Electron.
17(9), 1620–1628 (1981),
http://dx.doi.org/10.1109/JQE.1981.1071344
[13] Q. Lü, N. Kugler, H. Weber, S. Dong, N. Müller, and U.
Wittrock, A novel approach for compensation of birefringence in
cylindrical Nd: YAG rods, Opt. Quantum Electron.
28(1),
57–69 (1996),
http://dx.doi.org/10.1007/BF00578551