E. Gaižauskas
, O. Balachninaitė
Darbe teoriškai tiriama
skirtuminio dažnio generavimo terahercų bangų ruože dinamika,
naudojant keturbangį maišymą kvantiniame trijų lygmenų sistemų
ansamblyje. Trijų lygmenų sistema šalia draustino (dipoliniu
artiniu) šuolio iš pagrindinės į aukščiausią būseną turi ir
optiškai aktyvų žemo dažnio šuolį į vibracinę būseną (fononą).
Surištoji koherentinė elektromagnetinio lauko ir fononų būsena
(poliaritoninė banga) sukuriama kaupinant skirtingų dažnių
ultratrumpaisiais lazeriniais impulsais. Pirmasis dažnis ωL
matomame ar artimajame infraraudonųjų bangų ruože parenkamas
taip, kad būtų tenkinama dvifotonio rezonanso sąlyga, o antrasis
ωP – artimas dvigubam kaupinimo dažniui
(ωP ~ 2ωL).
Kaupinimo artiniu įvertinta terahercų bangos generavimo dinamika
demonstruoja optinio lyginimo (optical rectification, angl.)
metodo realizavimo galimybes terpėse su centrine simetrija.
Praktiškai pasiūlytas metodas galėtų būti taikomas
technologiškai patraukliose optinio stiklo su įterptomis
puslaidininkių nanodalelėmis terpėse, kurioms būdingi optiniai
šuoliai į eksitonines būsenas, pasižymintys dideliu osciliatorių
stipriu, o sužadinti koherentiniai eksitonai – ilga gyvavimo
trukme, palyginti su ultratrumpųjų kaupinančių impulsų
trukmėmis.
References
/ Nuorodos
[1] D.G. Auston and P.R. Smith, Generation and detection of
millimeter waves by picosecond photoconductivity, Appl. Phys.
Lett.
43(16), 631–633 (1983),
http://dx.doi.org/10.1063/1.94468
[2] D.G. Auston, K.P. Cheung, J.A. Valdmanis, and D.A. Kleinman,
Cherenkov radiation from femtosecond optical pulses in
electro-optic media, Phys. Rev. Lett.
53(16), 1555–1558
(1984),
http://dx.doi.org/10.1103/PhysRevLett.53.1555
[3] L. Xu, X.-C. Zhang, and D.H. Auston, Terahertz beam
generation by femtosecond optical pulses in electrooptic
materials, Appl. Phys. Lett.
61, 1784–1786 (1992),
http://dx.doi.org/10.1063/1.108426
[4] F. Blanchard, G. Sharma, and L. Razzari, et al., Generation
of intense terahertz radiation via optical methods, IEEE J. Sel.
Top. Quantum Electron.
17(1), 5–16 (2011),
http://dx.doi.org/10.1109/JSTQE.2010.2047715
[5] J.A. Flp, L. Palfalvi, S. Klingebiel, G. Almasi, F. Krausz,
S. Karsch, and J. Hebling, Generation of sub-mJ terahertz pulses
by optical rectification, Opt. Lett.
37, 557–559 (2012),
http://dx.doi.org/10.1364/OL.37.000557
[6] K.L. Vodopyanov, Optical generation of narrow-band terahertz
packets in periodically-inverted electro-optic crystals:
conversion efficiency and optimal laser pulse format, Opt.
Express
14, 2263–2276 (2006),
http://dx.doi.org/10.1364/OE.14.002263
[7] K.L. Vodopyanov, Optical THz wave generation with
periodically-inverted GaAs, Laser Photon. Rev.
2(1–2),
11–25 (2008),
http://dx.doi.org/10.1002/lpor.200710028
[8] M. Jewariya, M. Nagai, and K. Tanaka, Enhancement of
terahertz wave generation by cascaded χ(2) processes in LiNbO
3,
J. Opt. Soc. Am. B
26(9), A101–A103 (2009),
http://dx.doi.org/10.1364/JOSAB.26.00A101
[9] A. Bugay and S. Sazonov, The generation of terahertz wave
radiation via optical rectification in the self-induced
transparency regime, Phys. Lett. A
374, 1093–1096
(2010),
http://dx.doi.org/10.1016/j.physleta.2009.12.050
[10] J. Hebling, K.-L. Yeh, M.C. Hoffmann, B. Bartal, and K.A.
Nelson, Generation of high-power terahertz pulses by
tilted-pulse-front excitation and their application
possibilities, J. Opt. Soc. Am. B
25(7), 6–19 (2008),
http://dx.doi.org/10.1364/JOSAB.25.0000B6
[11] I. Pop and L. Moorman, Electromagnetically induced
generation, gain in delayed wave mixing, and measuring coherent
states using quantum-interference windows, Phys. Rev. A
60,
678–686 (1999),
http://dx.doi.org/10.1103/PhysRevA.60.678
[12] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R.
Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, and M.O. Scully,
Ultraslow group velocity and enhanced nonlinear optical efffects
in a coherently driven hot atomic gas, Phys. Rev. Lett.
82,
5229–5232 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.5229
[13] J. Mompart and R. Corbalan, Lasing without inversion, J.
Opt. B Quantum Semiclass.
2(3), R7 (2000),
http://dx.doi.org/10.1088/1464-4266/2/3/201
[14] E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, and V.
Vaicaitis, Probing electronic coherences by combined two- and
one-photon excitation in atomic vapors, Opt. Lett.
38,
124–126, (2013),
http://dx.doi.org/10.1364/OL.38.000124
[15] I.A. Poluektov, Yu.M. Popov, and V.S. Roitberg, Coherent
effects in the propagation of ultrashort light pulses in
resonant media. Part II (Review), Sov. J. Quant. Electr.
4(6),
719–739 (1974),
http://dx.doi.org/10.1070/QE1974v004n06ABEH009308
[16] I.A. Poluektov, Yu.M. Popov, and V.S. Roitberg, Self
induced transparency effect, Sov. Phys. Usp.
17(5),
673–690 (1975),
http://dx.doi.org/10.1070/PU1975v017n05ABEH004365
[17] E. Gaižauskas and G. Gedvilas, Theory of coherent oneand
two-photon interaction in a three-level system, Opt. Commun.
91(34),
312–320 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90455-Z
[18] O. Kittelmann, J. Ringling, A. Nazarkin, G. Korn, and I.V.
Hertel, Direct observation of coherent medium response under the
condition of two-photon excitation of krypton by femtosecond
uv-laser pulses, Phys. Rev. Lett.
76, 2682–2685 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2682
[19] E. Gaizauskas and L. Valkunas, Femtosecond four-wave mixing
spectroscopy of molecular aggregates, J. Phys. Chem. B
101(37),
7321–7326 (1997),
http://dx.doi.org/10.1021/jp9639713
[20] A. Nazarkin, G. Korn, O. Kittelmann, J. Ringling, and I.V.
Hertel. Femtosecond-pulse two-photon resonant
difference-frequency mixing in gases: a technique for tunable
vacuum-ultraviolet femtosecond-pulse generation and a
spectroscopic tool for studying atoms in strong laser fields,
Phys. Rev. A
56, 671–684 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.671
[21] A. Nazarkin and G. Korn, Coherent propagation effects and
pulse self-compression under the conditions of twophoton
resonant difference-frequency generation, Phys. Rev. A
56,
5187–5190 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.5187
[22] D. Grischkovsky, M.M.T. Loy, and P.F. Liao, Adiabatic
following model for two-photon transitions: Nonlinear mixing and
pulse propagation, Phys. Rev. A
12(6), 2514–2533 (1975),
http://dx.doi.org/10.1103/PhysRevA.12.2514
[23] J.-C. Diels and A.T. Georges, Coherent two-photon resonant
third- and fifth-harmonic vacuum-ultraviolet generation in metal
vapors, Phys. Rev. A
19(4), 1589–1906 (1979),
http://dx.doi.org/10.1103/PhysRevA.19.1589
[24] N.N. Zinov’ev, A.S. Nikogosian, and J.M. Chamberlain,
Terahertz radiation from a nonlinear slab transversed by an
optical pulse, Phys. Rev. Lett.
98, 044801 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.044801
[25] M.I. Bakunov, S.B. Bodrov, A.V. Maslov, and M. Hangyo,
Theory of terahertz generation in a slab of electro-optic
material using an ultrashort laser pulse focused to a line,
Phys. Rev. B
76(8), 085346 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.085346
[26] A. Schneider, Theory of terahertz pulse generation through
optical rectification in a nonlinear optical material with a
finite size, Phys. Rev. A
82, 033825 (2010),
http://dx.doi.org/10.1103/PhysRevA.82.033825
[27] P. Chen, C. Piermarocchi, and L.J. Sham, Control of exciton
dynamics in nanodots for quantum operations, Phys. Rev. Lett.
87(6),
067401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.067401
[28] E. Hanamura, Very large optical nonlinearity of
semiconductor microcrystallites, Phys. Rev. B
37,
1273–1279 (1988),
http://dx.doi.org/10.1103/PhysRevB.37.1273
[29] J. Kasprzak and W. Langbein, Coherent response of
individual weakly confined exciton-biexciton systems, J. Opt.
Soc. Am. B
29(7), 1766–1771 (2012),
http://dx.doi.org/10.1364/JOSAB.29.001766
[30] C.M. Tu, S.A. Ku, W.C. Chu, C.W. Luo, J.C. Chen, and C.C.
Chi, Pulsed terahertz radiation due to coherent phonon-polariton
excitation in 〈110〉 ZnTe crystal, J. Appl. Phys.
112(9),
093110 (2012),
http://dx.doi.org/10.1063/1.4764917