[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2955

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 155–161 (2014)


GENERATION OF THz-RADIATION BY DIFFERENCE-FREQUENCY MIXING AT ONE- AND TWO-PHOTON RESONANCES
E. Gaižauskasa, O. Balachninaitėa, and O. Khasanovb
aLaser Research Center, Vilnius University, Saulėtekio 10, LT-10222 Vilnius, Lithuania
bScientific-Practical Materials Research Center of the National Academy of Sciences of Belarus, P. Brovki 19, 220072, Minsk, Belarus
E-mail: eugenijus.gaizauskas@ff.vu.lt

Received 4 March 2014; accepted 29 May 2014

In this work, difference-frequency generation is theoretically analysed for the three-level quantum system, having forbidden in dipole approximation electronic and optically active vibration transitions from the ground state. Excitation of coherent phonon polaritons wave in the terahertz frequency range by an ultrashort optical pulse, being in the visible or near-infrared spectral regions, and injected pulse with frequency almost twice that of the pump is considered. Dynamics of terahertz radiation arising during excitation of both electronic and vibrational coherences at the two-photon and combined resonances in the ensemble of three-level quantum systems was evaluated.
Keywords: terahertz radiation, difference-frequency generation, two-photon resonance, coherent light and matter interaction
PACS: 42.6+5.-k,71.36.+c,78.20.-e

TERAHERCŲ SPINDULIUOTĖS GENERAVIMAS NAUDOJANT SKIRTUMINIO DAŽNIO MAIŠYMĄ ESANT VIENFOTONIAM IR DVIFOTONIAM REZONANSAMS
E. Gaižauskasa, O. Balachninaitėa, O. Khasanovb
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bBaltarusijos mokslų akademijos Mokslinis-praktinis medžiagotyros centras, Minskas, Baltarusija

Darbe teoriškai tiriama skirtuminio dažnio generavimo terahercų bangų ruože dinamika, naudojant keturbangį maišymą kvantiniame trijų lygmenų sistemų ansamblyje. Trijų lygmenų sistema šalia draustino (dipoliniu artiniu) šuolio iš pagrindinės į aukščiausią būseną turi ir optiškai aktyvų žemo dažnio šuolį į vibracinę būseną (fononą). Surištoji koherentinė elektromagnetinio lauko ir fononų būsena (poliaritoninė banga) sukuriama kaupinant skirtingų dažnių ultratrumpaisiais lazeriniais impulsais. Pirmasis dažnis ωL matomame ar artimajame infraraudonųjų bangų ruože parenkamas taip, kad būtų tenkinama dvifotonio rezonanso sąlyga, o antrasis ωP – artimas dvigubam kaupinimo dažniui (ωP ~ 2ωL). Kaupinimo artiniu įvertinta terahercų bangos generavimo dinamika demonstruoja optinio lyginimo (optical rectification, angl.) metodo realizavimo galimybes terpėse su centrine simetrija. Praktiškai pasiūlytas metodas galėtų būti taikomas technologiškai patraukliose optinio stiklo su įterptomis puslaidininkių nanodalelėmis terpėse, kurioms būdingi optiniai šuoliai į eksitonines būsenas, pasižymintys dideliu osciliatorių stipriu, o sužadinti koherentiniai eksitonai – ilga gyvavimo trukme, palyginti su ultratrumpųjų kaupinančių impulsų trukmėmis.

References / Nuorodos

[1] D.G. Auston and P.R. Smith, Generation and detection of millimeter waves by picosecond photoconductivity, Appl. Phys. Lett. 43(16), 631–633 (1983),
http://dx.doi.org/10.1063/1.94468
[2] D.G. Auston, K.P. Cheung, J.A. Valdmanis, and D.A. Kleinman, Cherenkov radiation from femtosecond optical pulses in electro-optic media, Phys. Rev. Lett. 53(16), 1555–1558 (1984),
http://dx.doi.org/10.1103/PhysRevLett.53.1555
[3] L. Xu, X.-C. Zhang, and D.H. Auston, Terahertz beam generation by femtosecond optical pulses in electrooptic materials, Appl. Phys. Lett. 61, 1784–1786 (1992),
http://dx.doi.org/10.1063/1.108426
[4] F. Blanchard, G. Sharma, and L. Razzari, et al., Generation of intense terahertz radiation via optical methods, IEEE J. Sel. Top. Quantum Electron. 17(1), 5–16 (2011),
http://dx.doi.org/10.1109/JSTQE.2010.2047715
[5] J.A. Flp, L. Palfalvi, S. Klingebiel, G. Almasi, F. Krausz, S. Karsch, and J. Hebling, Generation of sub-mJ terahertz pulses by optical rectification, Opt. Lett. 37, 557–559 (2012),
http://dx.doi.org/10.1364/OL.37.000557
[6] K.L. Vodopyanov, Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format, Opt. Express 14, 2263–2276 (2006),
http://dx.doi.org/10.1364/OE.14.002263
[7] K.L. Vodopyanov, Optical THz wave generation with periodically-inverted GaAs, Laser Photon. Rev. 2(1–2), 11–25 (2008),
http://dx.doi.org/10.1002/lpor.200710028
[8] M. Jewariya, M. Nagai, and K. Tanaka, Enhancement of terahertz wave generation by cascaded χ(2) processes in LiNbO3, J. Opt. Soc. Am. B 26(9), A101–A103 (2009),
http://dx.doi.org/10.1364/JOSAB.26.00A101
[9] A. Bugay and S. Sazonov, The generation of terahertz wave radiation via optical rectification in the self-induced transparency regime, Phys. Lett. A 374, 1093–1096 (2010),
http://dx.doi.org/10.1016/j.physleta.2009.12.050
[10] J. Hebling, K.-L. Yeh, M.C. Hoffmann, B. Bartal, and K.A. Nelson, Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities, J. Opt. Soc. Am. B 25(7), 6–19 (2008),
http://dx.doi.org/10.1364/JOSAB.25.0000B6
[11] I. Pop and L. Moorman, Electromagnetically induced generation, gain in delayed wave mixing, and measuring coherent states using quantum-interference windows, Phys. Rev. A 60, 678–686 (1999),
http://dx.doi.org/10.1103/PhysRevA.60.678
[12] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, and M.O. Scully, Ultraslow group velocity and enhanced nonlinear optical efffects in a coherently driven hot atomic gas, Phys. Rev. Lett. 82, 5229–5232 (1999),
http://dx.doi.org/10.1103/PhysRevLett.82.5229
[13] J. Mompart and R. Corbalan, Lasing without inversion, J. Opt. B Quantum Semiclass. 2(3), R7 (2000),
http://dx.doi.org/10.1088/1464-4266/2/3/201
[14] E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, and V. Vaicaitis, Probing electronic coherences by combined two- and one-photon excitation in atomic vapors, Opt. Lett. 38, 124–126, (2013),
http://dx.doi.org/10.1364/OL.38.000124
[15] I.A. Poluektov, Yu.M. Popov, and V.S. Roitberg, Coherent effects in the propagation of ultrashort light pulses in resonant media. Part II (Review), Sov. J. Quant. Electr. 4(6), 719–739 (1974),
http://dx.doi.org/10.1070/QE1974v004n06ABEH009308
[16] I.A. Poluektov, Yu.M. Popov, and V.S. Roitberg, Self induced transparency effect, Sov. Phys. Usp. 17(5), 673–690 (1975),
http://dx.doi.org/10.1070/PU1975v017n05ABEH004365
[17] E. Gaižauskas and G. Gedvilas, Theory of coherent oneand two-photon interaction in a three-level system, Opt. Commun. 91(34), 312–320 (1992),
http://dx.doi.org/10.1016/0030-4018(92)90455-Z
[18] O. Kittelmann, J. Ringling, A. Nazarkin, G. Korn, and I.V. Hertel, Direct observation of coherent medium response under the condition of two-photon excitation of krypton by femtosecond uv-laser pulses, Phys. Rev. Lett. 76, 2682–2685 (1996),
http://dx.doi.org/10.1103/PhysRevLett.76.2682
[19] E. Gaizauskas and L. Valkunas, Femtosecond four-wave mixing spectroscopy of molecular aggregates, J. Phys. Chem. B 101(37), 7321–7326 (1997),
http://dx.doi.org/10.1021/jp9639713
[20] A. Nazarkin, G. Korn, O. Kittelmann, J. Ringling, and I.V. Hertel. Femtosecond-pulse two-photon resonant difference-frequency mixing in gases: a technique for tunable vacuum-ultraviolet femtosecond-pulse generation and a spectroscopic tool for studying atoms in strong laser fields, Phys. Rev. A 56, 671–684 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.671
[21] A. Nazarkin and G. Korn, Coherent propagation effects and pulse self-compression under the conditions of twophoton resonant difference-frequency generation, Phys. Rev. A 56, 5187–5190 (1997),
http://dx.doi.org/10.1103/PhysRevA.56.5187
[22] D. Grischkovsky, M.M.T. Loy, and P.F. Liao, Adiabatic following model for two-photon transitions: Nonlinear mixing and pulse propagation, Phys. Rev. A 12(6), 2514–2533 (1975),
http://dx.doi.org/10.1103/PhysRevA.12.2514
[23] J.-C. Diels and A.T. Georges, Coherent two-photon resonant third- and fifth-harmonic vacuum-ultraviolet generation in metal vapors, Phys. Rev. A 19(4), 1589–1906 (1979),
http://dx.doi.org/10.1103/PhysRevA.19.1589
[24] N.N. Zinov’ev, A.S. Nikogosian, and J.M. Chamberlain, Terahertz radiation from a nonlinear slab transversed by an optical pulse, Phys. Rev. Lett. 98, 044801 (2007),
http://dx.doi.org/10.1103/PhysRevLett.98.044801
[25] M.I. Bakunov, S.B. Bodrov, A.V. Maslov, and M. Hangyo, Theory of terahertz generation in a slab of electro-optic material using an ultrashort laser pulse focused to a line, Phys. Rev. B 76(8), 085346 (2007),
http://dx.doi.org/10.1103/PhysRevB.76.085346
[26] A. Schneider, Theory of terahertz pulse generation through optical rectification in a nonlinear optical material with a finite size, Phys. Rev. A 82, 033825 (2010),
http://dx.doi.org/10.1103/PhysRevA.82.033825
[27] P. Chen, C. Piermarocchi, and L.J. Sham, Control of exciton dynamics in nanodots for quantum operations, Phys. Rev. Lett. 87(6), 067401 (2001),
http://dx.doi.org/10.1103/PhysRevLett.87.067401
[28] E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B 37, 1273–1279 (1988),
http://dx.doi.org/10.1103/PhysRevB.37.1273
[29] J. Kasprzak and W. Langbein, Coherent response of individual weakly confined exciton-biexciton systems, J. Opt. Soc. Am. B 29(7), 1766–1771 (2012),
http://dx.doi.org/10.1364/JOSAB.29.001766
[30] C.M. Tu, S.A. Ku, W.C. Chu, C.W. Luo, J.C. Chen, and C.C. Chi, Pulsed terahertz radiation due to coherent phonon-polariton excitation in 〈110〉 ZnTe crystal, J. Appl. Phys. 112(9), 093110 (2012),
http://dx.doi.org/10.1063/1.4764917