T. Jonavičius, S. Rekštytė, and M. Malinauskas
TRIMAČIŲ METALINIŲ JUNGČIŲ
MIKROFORMAVIMAS TIESIOGINIO LAZERINIO RAŠYMO IR CHEMINĖS
METALIZACIJOS BŪDU
Darbe tiriama galimybė formuoti
trimates metalines mikrojungtis tarp elektrai laidžių paviršių
panaudojant tiesioginį lazerinį rašymą fotopolimeruose ir
cheminį metalizavimą. Ši technologija leidžia laisvai parinkti
darinio geometriją, o cheminis metalizavimas pasižymi
selektyvumu ir jam nėra reikalingas išorinis elektrinis laukas.
Naudojant šį metodą eksperimentiškai suformuotos metalinės
jungtys, kurios veikia kaip mikrolaidai tarp dviejų elektrai
laidžių chromo paviršių. Nustatytos jų pagrindinės fizikinės
savybės, palyginamos su kitais metodais pasiekiamais rezultatais
(pasiektas atsikartojamumas gana mažas). Be to, reikia imtis
papildomų priemonių siekiant visiškai selektyvaus padengimo
sidabru.
Vis dėlto naudojant šį metodą galima formuoti trimačius
metalinius mikrodarinius, kurie gali būti panaudoti taikant
įvairias mikroelektromechanines sistemas, plazmoniką,
metamedžiagas bei nanofotoniką.
References
/ Nuorodos
[1] M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis,
Ultrafast-laser micro/nano-structuring of photo-polymers: a
decade of advances, Phys. Rep.
533(1), 1–31 (2013),
http://dx.doi.org/10.1016/j.physrep.2013.07.005
[2] K.-S. Lee, D.-Y. Yang, S. Park, and R. Kim, Recent
developments in the use of two-photon polymerization in precise
2D and 3D microfabrications, Polymer Adv. Tech.
17(2),
72–82 (2006),
http://dx.doi.org/10.1002/pat.664
[3] S. Maruo and J. Fourkas, Recent progress in multiphoton
microfabrication, Laser Photon. Rev.
2(1–2), 100–11
(2008),
http://dx.doi.org/10.1002/lpor.200710039
[4] M. Raimondi, S.M. Eaton, M. Nava, M. Lagana, G. Cerullo, and
R. Osellame, Two-photon laser polymerization: from fundamentals
to biomedical application in tissue engineering and regenerative
medicine, J. Appl. Biomater. Biomech.
10(1), 55–65
(2012),
http://dx.doi.org/10.5301/JABFM.2012.9278
[5] A. Ovsianikov, V. Mironov, J. Stamp, and R. Liska,
Engineering 3D cell-culture matrices: multiphoton processing
technologies for biological & tissue engineering
applications, Expert Rev. Med. Devices
9(6), 613–633
(2012),
http://dx.doi.org/10.1586/erd.12.48
[6] K. Terzaki, N. Vasilantonakis, A. Gaidukeviciute, C.
Reinhardt, C. Fotakis, M. Vamvakaki, and M. Farsari, 3D
conducting nanostructures fabricated using direct laser writing,
Opt. Mat. Express
1(4), 586–597 (2011),
http://dx.doi.org/10.1364/OME.1.000586
[7] G. von Freymann, A. Ledermann, M. Thiel, I. Staude, S.
Essig, K. Busch, and M. Wegener, Threedimensional nanostructures
for photonics, Adv. Funct. Mat.
20(7), 1038–1052 (2010),
http://dx.doi.org/10.1002/adfm.200901838
[8] V. Mizeikis, S. Juodkazis, R. Tarozaite, J. Juodkazyte, K.
Juodkazis, and H. Misawa, Fabrication and properties of
metalo-dielectric photonic crystal structures for infrared
spectral region, Opt. Express
15(13), 8454–8464 (2007),
http://dx.doi.org/10.1364/OE.15.008454
[9] L. Maigyte, V. Purlys, J. Trull, M. Peckus, C. Cojocaru, D.
Gailevičius, M. Malinauskas, and K. Staliunas, Flat lensing in
visible frequency range by woodpile photonic crystals, Opt.
Lett.
38(14), 2376–2378 (2013),
http://dx.doi.org/10.1364/OL.38.002376
[10] X.-F. Lin, Q.-D. Chen, L.-G. Nu, T. Jiang, W.-Q. Wang, and
H.-B. Sun, Mask-free production of integratable monolithic micro
logarithmic axicon lenses, J. Lightwave Tech.
28(8),
1256–1260 (2010),
http://dx.doi.org/10.1109/JLT.2010.2043413
[11] A. Žukauskas, M. Malinauskas, C. Reinhardt, B. Chichkov,
and R. Gadonas, Closely packed hexagonal conical microlens array
fabricated by direct laser photopolymerization, Appl. Opt.
51(21),
4995–5003 (2012),
http://dx.doi.org/10.1364/AO.51.004995
[12] G. Cojoc, C. Liberale, P. Candeloro, F. Gentile, G. Das,
F.D. Angelis, and E.D. Fabrizio, Optical micro-structures
fabricated on top of optical fibers by means of two-photon
photopolymerization, Microelectron. Eng.
87(5–8), 876–9
(2010),
http://dx.doi.org/10.1016/j.mee.2009.12.046
[13] M. Malinauskas, A. Žukauskas, K. Belazaras, K. Tikuišis, V.
Purlys, R. Gadonas, and A. Piskarskas, Laser fabrication of
various polymer microoptical components, Eur. Phys. J. Appl.
Phys.
58(02), 20501 (2012),
http://dx.doi.org/10.1051/epjap/2012110475
[14] D. Wu, Q.-D. Chen, L.-G. Niu, J.-N. Wang, J. Wang, R. Wang,
H. Xia, and H.-B. Sun, Femtosecond laser rapid prototyping of
nanoshells and suspending components towards microfluidic
devices, Lab Chip
9, 2391–2394 (2009),
http://dx.doi.org/10.1039/b902159k
[15] E. Stankevicius, T. Gertus, M. Rutkauskas, M. Gedvilas, G.
Raciukaitis, R. Gadonas, V. Smilgevicius, and M. Malinauskas,
Fabrication of micro-tube arrays in photopolymer SZ2080 by using
three different methods of a direct laser polymerization
technique, J. Micromech. Microeng.
22(6), 065022 (2012),
http://dx.doi.org/10.1088/0960-1317/22/6/065022
[16] A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S.
Gittard, R. Narayan, M. Löbler, K. Sternberg, K.-P. Schmitz, and
A. Haverich, Three-dimensional laser micro- and nano-structuring
of acrylated poly(ethylene glycol) materials and evaluation of
their cytoxicity for tissue engineering applications, Acta
Biomater.
7, 967–974 (2011),
http://dx.doi.org/10.1016/j.actbio.2010.10.023
[17] M. Malinauskas, D. Baltriukienė, A. Kraniauskas, P.
Danilevičius, R. Jarašienė, R. Širmenis, A. Žukauskas, E.
Balčiūnas, V. Purlys, R. Gadonas, V. Bukelskienė, V. Sirvydis,
and A. Piskarskas,
In vitro and
in vivo
biocompatibility study on laser 3D microstructurable polymers,
Appl. Phys. Mater. Sci. Process.
108(3), 751–759 (2012),
http://dx.doi.org/10.1007/s00339-012-6965-8
[18] F. Claeyssens, E. Hasan, A. Gaidukeviciute, D. Achilleos,
A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis,
M. Vamvakaki, B.N. Chichkov, and M. Farsari, Three-dimensional
biodegradable structures fabricated by two-photon
polymerization, Langmuir
25(5), 3219–3223 (2009),
http://dx.doi.org/10.1021/la803803m
[19] A. Matei, J. Schouc, S. Canulescu, M. Zamfirescu, C. Albu,
B. Mitu, E. Buruiana, T. Buruiana, C. Mustaciosu, I. Petcu, and
M. Dinescu, Functionalized ormosil scaffolds processed by direct
laser polymerization for application in tissue engineering,
Appl. Surf. Sci.
278, 357–361 (2013),
http://dx.doi.org/10.1016/j.apsusc.2012.10.104
[20] C. Schizas, V. Melissinaki, A. Gaidukeviciute, C.
Reinhardt, C. Ohrt, V. Dedoussis, B.N. Chichkov, C. Fotakis, M.
Farsari, and D. Karalekas, On the design and fabrication by
two-photon polymerization of a readily assembled micro-valve,
Int. J. Adv. Manuf. Technol.
48, 435–441 (2010),
http://dx.doi.org/10.1007/s00170-009-2320-4
[21] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
R. Jarašienė, R. Širmenis, D. Baltriukienė, V. Bukelskienė, R.
Gadonas, and M. Malinauskas, Micro-structured polymer scaffolds
fabricated by direct laser writing for tissue engineering, J.
Biomed. Opt.
17(8), 081405 (2012),
http://dx.doi.org/10.1117/1.JBO.17.8.081405
[22] A. Ovsianikov, A. Deiwick, S.V. Vlierberghe, P. Dubruel, L.
Moller, G. Drager, and B. Chichkov, Laser fabrication of
three-dimensional CAD scaffolds from photosensitive gelatin for
applications in tissue engineering, Biomacromolecules
12(4),
851–858, (2011),
http://dx.doi.org/10.1021/bm1015305
[23] P. Danilevičius, S. Rekštytė, E. Balčiūnas, A. Kraniauskas,
R. Širmenis, D. Baltriukieneė V. Bukelskienė, R. Gadonas, V.
Sirvydis, A. Piskarskas, and M. Malinauskas, Laser 3D
micro/nanofabrication of polymers for tissue engineering
applications, Opt. Laser. Technol.
45, 518–524 (2013),
http://dx.doi.org/10.1016/j.optlastec.2012.05.038
[24] J.-F. Xing, X.-Z. Dong, W.-Q. Chen, X.-M. Duan, N.
Takeyasu, T. Tanaka, and S. Kawata, Improving spatial resolution
of two-photon microfabrication by using photoinitiator with high
initiating efficiency, Appl. Phys. Lett.
90, 131106
(2007),
http://dx.doi.org/10.1063/1.2717532
[25] A. Žukauskas, M. Malinauskas, L. Kontenis, V. Purlys, D.
Paipulas, M. Vengris, and R. Gadonas, Organic dye doped
microstructures for optically active functional devices
fabricated via two-photon polymerization technique, Lith. J.
Phys.
50(1), 55–61 (2010),
http://dx.doi.org/10.3952/lithjphys.50112
[26] A. Otuka, V. Tribuzi, D. Correa, and C. Mendonca, Emission
features of microstructures fabricated by two-photon
polymerization containing three organic dyes, Opt. Mat. Express
2(12), 1803–1808 (2012),
http://dx.doi.org/10.1364/OME.2.001803
[27] J. Wang, H. Xia, B.-B. Xu, L.-G. Niu, D. Wu, Q.-D. Chen,
and H.-B. Sun, Remote manipulation of micronanomachines
containing magnetic nanoparticles, Opt. Lett.
34(5),
581–583 (2009),
http://dx.doi.org/10.1364/OL.34.000581
[28] M. Suter, L. Zhang, E. Siringil, C. Peters, T. Luehmann, O.
Ergeneman, K. Peyer, B. Nelson, and C. Hierold,
Superparamagnetic microrobots: fabrication by two-photon
polymerization and biocompatibility, Biomed. Microdevices
15,
997–1003 (2013),
http://dx.doi.org/10.1007/s10544-013-9791-7
[29] D. Correa, P. Tayalia, G. Cosendey, D. Santos, R. Aroca, E.
Mazur, and C. Mendonca, Two-photon polymerization for
fabricating structures containing the biopolymer chitosan, J.
Nanosci. Nanotech.
9, 5845–5849 (2009),
http://dx.doi.org/10.1166/jnn.2009.1292
[30] M. Farsari, G. Filippidis, T. Drakakis, K. Sambani, S.
Georgiou, G. Papadakis, E. Gizeli, and C. Fotakis,
Three-dimensional biomolecule patterning, Appl. Surf. Sci.
253(19),
8115–8118 (2007),
http://dx.doi.org/10.1016/j.apsusc.2007.02.177
[31] J. Gansel, M. Thiel, M. Rill, M. Decker, K. B. V. Saile, G.
von Freymann, S. Linden, and M. Wegener, Gold helix photonic
metamaterial as broadband circular polarizer, Science
325(5947),
1513–1515 (2009),
http://dx.doi.org/10.1126/science.1177031
[32] M. Farsari and B. Chichkov, Materials processing:
Two-photon fabrication, Nat. Photon.
3, 450–452 (2009),
http://dx.doi.org/10.1038/nphoton.2009.131
[33] W. Davis, J. Wilson, S. Mick, J. Xu, H. Hua, C. Mineo, A.
Sule, M. Steer, and P. Franzon, Demystifying 3D ICS: The pros
and cons of going vertical, IEEE Des. Test. Comput.
22(6),
498–510 (2005),
http://dx.doi.org/10.1109/MDT.2005.136
[34] K. Tu, Reliability challenges in 3D IC packaging
technology, Microelectron. Reliab.
51(3), 517–523
(2011),
http://dx.doi.org/10.1016/j.microrel.2010.09.031
[35] S. Ushiba, S. Shoji, K. Masui, P. Kuray, J. Kono, and S.
Kawata, 3D microfabrication of single-wall carbon
nanotube/polymer composites by two-photon polymerization
litography, Carbon
59, 283–288 (2013),
http://dx.doi.org/10.1016/j.carbon.2013.03.020
[36] M. Oubaha, A. Kavanagh, A. Gorin, G. Bickauskaite, R.
Byrne, M. Farsari, R. Winfield, D. Diamond, C. McDonagh, and R.
Copperwhite, Graphene-doped photo-patternable ionogels: tuning
of conductivity and mechanical stability of 3D microstructures,
J. Mater. Chem.
22, 10552–10559 (2012),
http://dx.doi.org/10.1039/c2jm30512g
[37] K. Kurselis, R. Kiyan, V. Bagratashvili, V. Popov, and B.
Chichkov, 3D fabrication of all-polymer conductive
microstructures by two photon polymerization, Opt. Express
21(25),
31029–31035 (2013),
http://dx.doi.org/10.1364/OE.21.031029
[38] S. Maruo and T. Saeki, Femtosecond laser direct writing of
metallic microstructures by photoreduction of silver nitrate in
a polymer matrix, Opt. Express
16(2), 1174–1179 (2008),
http://dx.doi.org/10.1364/OE.16.001174
[39] S. Passinger, M. Saifullah, C. Reinhardt, K. Subramanian,
B. Chichkov, and M. Welland, Direct 3D patterning of TiO
2
using femtosecond laser pulses, Adv. Mater.
19(9),
1218–1221 (2007),
http://dx.doi.org/10.1002/adma.200602264
[40] Y.-Y. Cao, N. Takeyasu, T. Tanaka, X.-M. Duan, and S.
Kawata, 3D metallic nanostructure fabrication by
surfactant-assisted multiphoton-induced reduction, Small
5(10),
1144–1148 (2009),
http://dx.doi.org/10.1002/smll.200801179
[41] G. Lewis and E. Schlienger, Practical considerations and
capabilities for laser assisted direct metal deposition, Mater.
Design
21(4), 417–423 (2000),
http://dx.doi.org/10.1016/S0261-3069(99)00078-3
[42] B.S. Lim, A. Rahtu, and R. Gordon, Atomic layer deposition
of transition metals, Nat. Mater.
2, 749–754 (2003),
http://dx.doi.org/10.1038/nmat1000
[43] R. Farrer, C. LaFratta, L. Li, J. Praino, M. Naughton, B.
Saleh, M. Teich, and J. Fourkas, Selective functionalization of
3-D polymer microstructures, J. Am. Chem. Soc.
128(6),
1796–1797 (2006),
http://dx.doi.org/10.1021/ja0583620
[44] S. Rekštytė, A. Žukauskas, V. Purlys, Y. Gordienko, and M.
Malinauskas, Direct laser writing of 3D polymer
micro/nanostructures on metallic surfaces, Appl. Surf. Sci.
270,
8115–8118 (2013),
http://dx.doi.org/10.1016/j.apsusc.2013.01.034
[45]
Van Nostrand's Scientific Encyclopedia, eds. G.
Considine and P. Kulik, 10th ed. (Wiley, 2008),
http://dx.doi.org/10.1002/9780471743989
[46] C. LaFratta, D. Lim, K. O'Malley, T. Baldacchini, and J.
Fourkas, Direct laser patterning of conductive wires on
three-dimensional polymeric microstructures, Chem. Mater.
18(8),
2038–2042 (2006),
http://dx.doi.org/10.1021/cm0525306
[47] Y.-S. Chen, A. Tal, and S. Kuebler, Route to
threedimensional metallized microstructures using cross-linkable
epoxide SU-8, Chem. Mater.
19(16), 3858–3860 (2007),
http://dx.doi.org/10.1021/cm0710812
[48] M. Farsari, M. Vamvakaki, and B. Chichkov, Multiphoton
polymerization of hybrid materials, J. Opt.
12, 124001
(2010),
http://dx.doi.org/10.1088/2040-8978/12/12/124001
[49] F. Burmeister, S Steenhusen, R. Houbertz, U. Zeitner, S.
Nolte, and A. Tunnermann, Materials and technologies for
fabrication of three-dimensional microstructures with sub-100 nm
feature sizes by two-photon polymerization, J. Laser Appl.
24,
042014 (2012).
http://dx.doi.org/10.2351/1.4730807
[50] D. Gramotnev and S. Bozhevolnyi, Plasmonics beyond the
diffraction limit, Nat. Photon.
4(2), 83–91 (2010).
http://dx.doi.org/10.1038/nphoton.2009.282
[51] M. Rill, C. Plet, M. Thiel, I. Staude, G. Freymann, S.
Linden, and M. Wegener, Photonic metamaterials by direct laser
writing and silver chemical vapour deposition, Nat. Mater.
7(7),
543–546 (2008).
http://dx.doi.org/10.1038/nmat2197
[52] M. Hossain and M. Gu, Fabrication methods of 3D periodic
metallic nano/microstructures for photonics applications, Laser
Photon. Rev.
8(20), 233–249 (2014).
http://dx.doi.org/10.1002/lpor.201300052