R. Grigalaitis
, Š. Bagdzevičius
, J. Banys
,
E.E. Tornau
, K. Bormanis
, A. Sternberg
,
I. Bdikin
, and A. Kholkin
Received 5 June 2014; revised 14 July 2014; accepted 23 September
2014
References
/ Nuorodos
[1] R. Viana, P. Lunkenheimer, J. Hemberger, R. Bohmer, and A.
Loidl, Dielectric spectroscopy in SrTiO
3, Phys Rev. B
50, 601–604 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.601
[2] G. Shirane and Y. Yamada, Lattice-dynamical study of the
110°K phase transition in SrTiO
3, Phys. Rev.
177,
858–863 (1969),
http://dx.doi.org/10.1103/PhysRev.177.858
[3] J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L.
Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K.
Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer,
J. Levy, and D.G. Schlom, Room-temperature ferroelectricity in
strained SrTiO
3, Nature
430, 758–761 (2004),
http://dx.doi.org/10.1038/nature02773
[4] V.V. Lemanov, E.P. Smirnova, P.P. Syrnikov, and E.A.
Tarakanov, Phase transitions and glasslike behavior in Sr
1-xBa
xTiO
3,
Phys Rev. B
54, 3151–3157 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.3151
[5] J.G. Bednorz and K.A. Müller, Sr
1-xCa
xTiO
3:
an XY quantum ferroelectric with transition to randomness, Phys.
Rev. Lett.
52, 2289–2292 (1984),
http://dx.doi.org/10.1103/PhysRevLett.52.2289
[6] A. Tkach, P.M. Vilarinho, and A.L. Kholkin, Polar behavior
in Mn-doped SrTiO
3 ceramics, Appl. Phys. Lett.
82,
172902 (2005),
http://dx.doi.org/10.1063/1.1920414
[7] A. Tkach, A. Almeida, J. Agostinho Moreira, T.M. Correia,
M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, and J.
Petzelt, Enhancement of tetragonality and role of strontium
vacancies in heterovalent doped SrTiO
3, Appl. Phys.
Lett.
98, 052903 (2011),
http://dx.doi.org/10.1063/1.3549181
[8] G.I. Scanavi, I.J. Ksendzov, V.A. Trigubenko, and V.G.
Prokhvatilov, Relaxation polarization and losses in
nonferroelectric dielectrics possessing very high dielectric
constants, Zh. Eksp. Teor. Fiz.
33, 320 (1957)
[9] V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, M.
Savinov, P. Samoukhina, T. Ostapchuk, J. Pokorný, M. Avdeev, A.
Kholkin, and P. Vilarinho, Broad-band dielectric spectroscopy of
SrTiO
3: Bi ceramics, Phys. Rev. B
69,144104
(2004),
http://dx.doi.org/10.1103/PhysRevB.69.144104
[10] A. Tkach, P.M. Vilarinho, A.L. Kholkin, I.M. Reaney, J.
Pokorny, and J. Petzelt, Mechanisms of the effect of dopants and
P(O
2) on the improper ferroelastic phase transition
in SrTiO
3, Chem. Mater.
19, 6471–6477 (2007),
http://dx.doi.org/10.1021/cm071795c
[11] A. Tkach, T.M. Correia, A. Almeida, J. Agostinho Moreira,
M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, and J.
Petzelt, Role of trivalent Sr substituents and Sr vacancies in
tetragonal and polar states of SrTiO
3, Acta Mater.
59,
5388–5397 (2011),
http://dx.doi.org/10.1016/j.actamat.2011.05.011
[12] R. Grigalaitis, J. Banys, S. Bagdzevičius, A. Sternberg,
and K. Bormanis, Dielectric investigation of lead-free
perovskite strontium titanate with 25% bismuth ceramics, Phys.
Status Solidi C
6(12), 2743–2745 (2009),
http://dx.doi.org/10.1002/pssc.200982535
[13] J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsky, S.
Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S.
Kamba, V. Bovtun, J. Pokorny, M. Savinov, V. Porokhonskyy, D.
Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M.
Dressel, and R. Waser, Dielectric, infrared, and Raman response
of undoped SrTiO
3 ceramics: Evidence of polar grain
boundaries, Phys. Rev. B
64, 184111 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.184111
[14] J. Petzelt, T. Ostapchuk, I. Gregora, P. Kuzel, J. Liu, and
Z. Chen, Infrared and Raman studies of the dead grain-boundary
layers in SrTiO
3 fine-grain ceramics, J. Phys.
Condens. Matter
19, 196222 (2007),
http://dx.doi.org/10.1088/0953-8984/19/19/196222
[15] K. van Benthem, G. Tan, L.K. DeNoyer, R.H. French, and M.
Ruhle, Local optical properties, electron densities, and London
dispersion energies of atomically structured grain boundaries,
Phys. Rev. Lett.
93, 227201 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.227201
[16] R. Shao, M.F. Chisholm, G. Duscher, and D.A. Bonnell,
Low-temperature resistance anomaly at SrTiO
3 grain
boundaries: evidence for an interface-induced phase transition,
Phys. Rev. Lett.
95, 197601 (2005),
http://dx.doi.org/10.1103/PhysRevLett.95.197601
[17] M. Kim, G. Duscher, N.D. Browning, K. Sohlberg, S.T.
Pantelides, and S.J. Pennycook, Nonstoichiometry and the
electrical activity of grain boundaries in SrTiO
3,
Phys. Rev. Lett.
86, 4056–4059 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.4056
[18] L.E. Cross, Flexoelectric effects: Charge separation in
insulating solids subjected to elastic strain gradients, J.
Mater. Sci.
41, 53–63 (2006),
http://dx.doi.org/10.1007/s10853-005-5916-6
[19] W. Ma and L.E. Cross, Large flexoelectric polarization in
ceramic lead magnesium niobate, Appl. Phys. Lett.
79,
4420–4422 (2001),
http://dx.doi.org/10.1063/1.1426690
[20] W. Zhu, J.Y. Fu, N. Li, and L.E. Cross, Piezoelectric
composite based on the enhanced flexoelectric effects, Appl.
Phys. Lett.
89, 192904 (2006),
http://dx.doi.org/10.1063/1.2382740
[21] P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, and J.F.
Scott, Strain-gradient-induced polarization in SrTiO
3
single crystals, Phys. Rev. Lett.
99, 167601 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.167601
[22] V. Shelukhin, D. Ehre, E. Lavert, E. Wachtel, Y. Feldman,
A. Tagantsev, and I. Lubomirsky, Structural determinants of the
sign of the pyroelectric effect in quasi-amorphous SrTiO
3
films, Adv. Funct. Mater.
21, 1403–1410 (2011),
http://dx.doi.org/10.1002/adfm.201001613
[23] A. Kholkin, I. Bdikin, T. Ostapchuk, and J. Petzelt, Room
temperature surface piezoelectricity in SrTiO
3
ceramics via piezoresponse force microscopy, Appl. Phys. Lett.
93,
222905 (2008),
http://dx.doi.org/10.1063/1.3037220
[24] A. Kholkin, A. Morozovska, D. Kiselev, I. Bdikin, B.
Rodriguez, P. Wu, A. Bokov, Z.-G. Ye, B. Dkhil, L.-Q. Chen, M.
Kosec, and S.V. Kalinin, Surface domain structures and
mesoscopic phase transition in relaxor ferroelectrics, Adv.
Funct. Mater.
21, 1977–1987 (2011),
http://dx.doi.org/10.1002/adfm.201002582
[25] I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero,
J. Gómez-Herrero, and A.M. Baro, WSXM: A software for scanning
probe microscopy and a tool for nanotechnology, Rev. Sci.
Instrum.
78, 013705 (2007),
http://dx.doi.org/10.1063/1.2432410
[26] D.A. Kiselev, I.K. Bdikin, E.K. Selezneva, K. Bormanis, A.
Sternberg, and A.L. Kholkin, Grain size effect and local
disorder in polycrystalline relaxors via scanning probe
microscopy, J. Phys. Appl. Phys.
40, 7109–7112 (2007),
http://dx.doi.org/10.1088/0022-3727/40/22/037
[27] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer,
Localized metallic conductivity and selfhealing during thermal
reduction of SrTiO
3, Phys. Rev. Lett.
88,
075508 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.075508
[28] N. Shanthi and D.D. Sarma, Electronic structure of electron
doped SrTiO
3: SrTiO
3-δ
and Sr
1-xLa
xTiO
3,
Phys. Rev. B
57, 2153–2158 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.2153
[29] M. Dawber, J.F. Scott, and A.J. Hartmann, Effect of donor
and acceptor dopants on Schottky barrier heights and vacancy
concentrations in barium strontium titanate, J. Eur. Ceram. Soc.
21, 1633–1636 (2001),
http://dx.doi.org/10.1016/S0955-2219(01)00081-4