[PDF]    http://dx.doi.org/10.3952/physics.v54i3.2957

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 170–176 (2014)


LOCAL PIEZOELECTRICITY IN SrTiO3-BiTiO3 CERAMICS
R. Grigalaitisa, Š. Bagdzevičiusa, J. Banysa, E.E. Tornaub, K. Bormanisc, A. Sternbergc, I. Bdikind,e, and A. Kholkind
aFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
bCenter for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius, Lithuania
cInstitute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
dDepartment of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
eDepartment of Mechanical Engineering/TEMA, University of Aveiro, 3810-193 Aveiro, Portugal
E-mail: robertas.grigalaitis@ff.vu..lt

Received 5 June 2014; revised 14 July 2014; accepted 23 September 2014

Local piezoelectric properties of Bi-doped SrTiO3 ceramics have been investigated by piezoresponse force microscopy. The appearance of both out-of-plane and in-plane polarization components confirmed the piezoelectric nature of the obtained signal. The absence of labyrinth-like structures in observed piezoelectric contrast is not consistent with the expected existence of a relaxor ferroelectric state in this material. The close similarity of local piezoelectric properties in Bi-doped SrTiO3 with pure SrTiO3 suggests that the origin of obtained piezoresponse can be attributed to the flexoelectric phenomenon. Bi-doping leads to occurrence of oxygen vacancies and negative charge on the surface of the sample.
Keywords: piezoelectric, piezoresponse force microscopy, flexoelectric, ferroelectric relaxor
PACS: 77.84.-s, 07.79.Lh, 77.65.Ly, 77.80.Jk

LOKALIOS PJEZOELEKTRINĖS SrTiO3-BiTiO3 KERAMIKŲ SAVYBĖS

R. Grigalaitisa, Š. Bagdzevičiusa, J. Banysa, E.E. Tornaub, K. Bormanisc, A. Sternbergc, I. Bdikind,e, A. Kholkind
aVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
bFizinių ir technologijos mokslų centras, Vilnius, Lietuva
cLatvijos universiteto Kietojo kūno fizikos institutas, Ryga, Latvija
dAveiro universiteto Keramikos ir stiklo inžinerijos fakultetas / CICECO, Aveiro, Portugalija
eAveiro universiteto Mechaninės inžinerijos fakultetas / TEMA, Aveiro, Portugalija

Lokalios pjezoelektrinės bismutu praturtintų SrTiO3 keramikų savybės buvo tyrinėjamos pjezoelektrinės jėgos mikroskopijos metodu. Pjezoelektrinę gautų duomenų prigimtį patvirtino tai, kad buvo stebimos tiek statmenosios, tiek ir lygiagrečiosios bandinio plokštumai poliarizacijos komponentės. Kadangi matuotasis pjezoelektrinis atsakas neparodė jokių „labirinto“ tipo struktūrų, prognozuotos feroelektrinio relaksoriaus būsenos šioje medžiagoje aptikti nepavyko. Ženklus lokalių pjezoelektrinių bismutu praturtintų SrTiO3 keramikų savybių panašumas į grynos SrTiO3 savybes leidžia daryti prielaidą, kad gautasis pjezoelektrinis atsakas gali būti priskirtas fleksoelektriniam efektui. Praturtinimas bismutu sukelia deguonies vakansijų bei neigiamo krūvio atsiradimą bandinio paviršiuje.

References / Nuorodos

[1] R. Viana, P. Lunkenheimer, J. Hemberger, R. Bohmer, and A. Loidl, Dielectric spectroscopy in SrTiO3, Phys Rev. B 50, 601–604 (1994),
http://dx.doi.org/10.1103/PhysRevB.50.601
[2] G. Shirane and Y. Yamada, Lattice-dynamical study of the 110°K phase transition in SrTiO3, Phys. Rev. 177, 858–863 (1969),
http://dx.doi.org/10.1103/PhysRev.177.858
[3] J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, and D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3, Nature 430, 758–761 (2004),
http://dx.doi.org/10.1038/nature02773
[4] V.V. Lemanov, E.P. Smirnova, P.P. Syrnikov, and E.A. Tarakanov, Phase transitions and glasslike behavior in Sr1-xBaxTiO3, Phys Rev. B 54, 3151–3157 (1996),
http://dx.doi.org/10.1103/PhysRevB.54.3151
[5] J.G. Bednorz and K.A. Müller, Sr1-xCaxTiO3: an XY quantum ferroelectric with transition to randomness, Phys. Rev. Lett. 52, 2289–2292 (1984),
http://dx.doi.org/10.1103/PhysRevLett.52.2289
[6] A. Tkach, P.M. Vilarinho, and A.L. Kholkin, Polar behavior in Mn-doped SrTiO3 ceramics, Appl. Phys. Lett. 82, 172902 (2005),
http://dx.doi.org/10.1063/1.1920414
[7] A. Tkach, A. Almeida, J. Agostinho Moreira, T.M. Correia, M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, and J. Petzelt, Enhancement of tetragonality and role of strontium vacancies in heterovalent doped SrTiO3, Appl. Phys. Lett. 98, 052903 (2011),
http://dx.doi.org/10.1063/1.3549181
[8] G.I. Scanavi, I.J. Ksendzov, V.A. Trigubenko, and V.G. Prokhvatilov, Relaxation polarization and losses in nonferroelectric dielectrics possessing very high dielectric constants, Zh. Eksp. Teor. Fiz. 33, 320 (1957)
[9] V. Porokhonskyy, A. Pashkin, V. Bovtun, J. Petzelt, M. Savinov, P. Samoukhina, T. Ostapchuk, J. Pokorný, M. Avdeev, A. Kholkin, and P. Vilarinho, Broad-band dielectric spectroscopy of SrTiO3: Bi ceramics, Phys. Rev. B 69,144104 (2004),
http://dx.doi.org/10.1103/PhysRevB.69.144104
[10] A. Tkach, P.M. Vilarinho, A.L. Kholkin, I.M. Reaney, J. Pokorny, and J. Petzelt, Mechanisms of the effect of dopants and P(O2) on the improper ferroelastic phase transition in SrTiO3, Chem. Mater. 19, 6471–6477 (2007),
http://dx.doi.org/10.1021/cm071795c
[11] A. Tkach, T.M. Correia, A. Almeida, J. Agostinho Moreira, M.R. Chaves, O. Okhay, P.M. Vilarinho, I. Gregora, and J. Petzelt, Role of trivalent Sr substituents and Sr vacancies in tetragonal and polar states of SrTiO3, Acta Mater. 59, 5388–5397 (2011),
http://dx.doi.org/10.1016/j.actamat.2011.05.011
[12] R. Grigalaitis, J. Banys, S. Bagdzevičius, A. Sternberg, and K. Bormanis, Dielectric investigation of lead-free perovskite strontium titanate with 25% bismuth ceramics, Phys. Status Solidi C 6(12), 2743–2745 (2009),
http://dx.doi.org/10.1002/pssc.200982535
[13] J. Petzelt, T. Ostapchuk, I. Gregora, I. Rychetsky, S. Hoffmann-Eifert, A.V. Pronin, Y. Yuzyuk, B.P. Gorshunov, S. Kamba, V. Bovtun, J. Pokorny, M. Savinov, V. Porokhonskyy, D. Rafaja, P. Vanek, A. Almeida, M.R. Chaves, A.A. Volkov, M. Dressel, and R. Waser, Dielectric, infrared, and Raman response of undoped SrTiO3 ceramics: Evidence of polar grain boundaries, Phys. Rev. B 64, 184111 (2001),
http://dx.doi.org/10.1103/PhysRevB.64.184111
[14] J. Petzelt, T. Ostapchuk, I. Gregora, P. Kuzel, J. Liu, and Z. Chen, Infrared and Raman studies of the dead grain-boundary layers in SrTiO3 fine-grain ceramics, J. Phys. Condens. Matter 19, 196222 (2007),
http://dx.doi.org/10.1088/0953-8984/19/19/196222
[15] K. van Benthem, G. Tan, L.K. DeNoyer, R.H. French, and M. Ruhle, Local optical properties, electron densities, and London dispersion energies of atomically structured grain boundaries, Phys. Rev. Lett. 93, 227201 (2004),
http://dx.doi.org/10.1103/PhysRevLett.93.227201
[16] R. Shao, M.F. Chisholm, G. Duscher, and D.A. Bonnell, Low-temperature resistance anomaly at SrTiO3 grain boundaries: evidence for an interface-induced phase transition, Phys. Rev. Lett. 95, 197601 (2005),
http://dx.doi.org/10.1103/PhysRevLett.95.197601
[17] M. Kim, G. Duscher, N.D. Browning, K. Sohlberg, S.T. Pantelides, and S.J. Pennycook, Nonstoichiometry and the electrical activity of grain boundaries in SrTiO3, Phys. Rev. Lett. 86, 4056–4059 (2001),
http://dx.doi.org/10.1103/PhysRevLett.86.4056
[18] L.E. Cross, Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients, J. Mater. Sci. 41, 53–63 (2006),
http://dx.doi.org/10.1007/s10853-005-5916-6
[19] W. Ma and L.E. Cross, Large flexoelectric polarization in ceramic lead magnesium niobate, Appl. Phys. Lett. 79, 4420–4422 (2001),
http://dx.doi.org/10.1063/1.1426690
[20] W. Zhu, J.Y. Fu, N. Li, and L.E. Cross, Piezoelectric composite based on the enhanced flexoelectric effects, Appl. Phys. Lett. 89, 192904 (2006),
http://dx.doi.org/10.1063/1.2382740
[21] P. Zubko, G. Catalan, A. Buckley, P.R.L. Welche, and J.F. Scott, Strain-gradient-induced polarization in SrTiO3 single crystals, Phys. Rev. Lett. 99, 167601 (2007),
http://dx.doi.org/10.1103/PhysRevLett.99.167601
[22] V. Shelukhin, D. Ehre, E. Lavert, E. Wachtel, Y. Feldman, A. Tagantsev, and I. Lubomirsky, Structural determinants of the sign of the pyroelectric effect in quasi-amorphous SrTiO3 films, Adv. Funct. Mater. 21, 1403–1410 (2011),
http://dx.doi.org/10.1002/adfm.201001613
[23] A. Kholkin, I. Bdikin, T. Ostapchuk, and J. Petzelt, Room temperature surface piezoelectricity in SrTiO3 ceramics via piezoresponse force microscopy, Appl. Phys. Lett. 93, 222905 (2008),
http://dx.doi.org/10.1063/1.3037220
[24] A. Kholkin, A. Morozovska, D. Kiselev, I. Bdikin, B. Rodriguez, P. Wu, A. Bokov, Z.-G. Ye, B. Dkhil, L.-Q. Chen, M. Kosec, and S.V. Kalinin, Surface domain structures and mesoscopic phase transition in relaxor ferroelectrics, Adv. Funct. Mater. 21, 1977–1987 (2011),
http://dx.doi.org/10.1002/adfm.201002582
[25] I. Horcas, R. Fernández, J.M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A.M. Baro, WSXM: A software for scanning probe microscopy and a tool for nanotechnology, Rev. Sci. Instrum. 78, 013705 (2007),
http://dx.doi.org/10.1063/1.2432410
[26] D.A. Kiselev, I.K. Bdikin, E.K. Selezneva, K. Bormanis, A. Sternberg, and A.L. Kholkin, Grain size effect and local disorder in polycrystalline relaxors via scanning probe microscopy, J. Phys. Appl. Phys. 40, 7109–7112 (2007),
http://dx.doi.org/10.1088/0022-3727/40/22/037
[27] K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Localized metallic conductivity and selfhealing during thermal reduction of SrTiO3, Phys. Rev. Lett. 88, 075508 (2002),
http://dx.doi.org/10.1103/PhysRevLett.88.075508
[28] N. Shanthi and D.D. Sarma, Electronic structure of electron doped SrTiO3: SrTiO3-δ and Sr1-xLaxTiO3, Phys. Rev. B 57, 2153–2158 (1998),
http://dx.doi.org/10.1103/PhysRevB.57.2153
[29] M. Dawber, J.F. Scott, and A.J. Hartmann, Effect of donor and acceptor dopants on Schottky barrier heights and vacancy concentrations in barium strontium titanate, J. Eur. Ceram. Soc. 21, 1633–1636 (2001),
http://dx.doi.org/10.1016/S0955-2219(01)00081-4