[PDF]    http://dx.doi.org/10.3952/physics.v54i4.3010

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 217–226 (2014)


PHONON-ASSISTED KINETICS OF ELECTRON-HOLE PAIR IN TWO-BAND MODEL
Eriks Klotins
Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia
E-mail: klotins@cfi.lu.lv

Received 5 May 2014; revised 10 June 2014; accepted 23 September 2014

Photoexcited kinetics of electrons and holes in two-band dielectric including phonon-assisted generation of the electron-hole pair is modelled by combining the quantum field and solid-state band theory. These methods create an explicit time-domain representation of photoinduced processes without resorting to the perturbation theory for the electromagnetic field. Input entities for the two-band model are dispersion relations for the electron and hole, the band-gap, and the phonon frequencies computed by nonrelativistic methods or found experimentally. The phonon-assisted electron-hole pair kinetics is initiated by the Baker-Campbell-Hausdorff canonical transformation accounting for the back reaction of phonons to the electron-hole subsystem. The output is a unifying phonon-assisted description of the distribution function of electron and hole quasiparticles.
Keywords: two-band model, electron-hole excitation, Baker-Campbell-Hausdorf canonical transformation
PACS: 71.15.Rf, 63.20.kd, 42.50.Ct

FONONŲ PALAIKOMA ELEKTRONŲ IR VAKANSIJŲ PORŲ SUSIDARYMO KINETIKA DVIEJŲ JUOSTŲ MODELYJE

Ēriks Klotiņš
Latvijos universiteto Kietojo kūno fizikos institutas, Ryga, Latvija

Šiame darbe pateikiami mūsų tyrimų rezultatai, formuojant stačiakampio skerspjūvio kanalus tūriniame lydytame kvarce. Selektyvus cheminis ėsdinimas kvarce buvo inicijuojamas apšvita femtosekundiniu lazeriu. Lazeriu modifikuotos bandinio sritys buvo lokaliai išėsdinamos fluoro rūgštimi. Pasiūlytas naujas metodas mikrokanalų su norimu skerspjūviu formavimui, panaudojant daugkartinį kanalo skenavimą. Buvo ištirta cheminio ėsdinimo selektyvumo priklausomybė nuo lazerio spindulio skenavimo greičio, lazerio impulso energijos ir poliarizacijos ir aptariami galimi modifikavimo procesai, sukeliantys nemonotonišką selektyvumo kitimą.

References /Nuorodos

[1] M. Agrawal, Quantum field theory (QFT) and quantum optics (QED), in: Fundamental Physics in Nano-Structured Materials and Devices (Stanford University, 2008)
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.212.6436&rep=rep1&type=pdf
[2] H. Fröhlich, Electrons in lattice fields, Adv. Phys. 3, 325 (1954),
http://dx.doi.org/10.1080/00018735400101213
[3] J. Fröhlich, Existence of dressed one electron states in a class of persistent models, Fortschr. Phys. 22, 159 (1974),
http://dx.doi.org/10.1002/prop.19740220304
[4] T. Holstein, Studies of polaron motion: Part I. The molecular-crystal model, Ann. Phys. (N.Y.) 8, 325 (1959),
http://dx.doi.org/10.1016/0003-4916(59)90002-8
[5] T. Holstein,  Studies of polaron motion: Part II. The “small” polaron, Ann. Phys. (N.Y.) 8, 343 (1959),
http://dx.doi.org/10.1016/0003-4916(59)90003-X
[6] A.M. Yaremko, V.M. Dzhagan, V.O. Yukhuymchuk, T.L. Linnik, H. Ratajczak, J. Baran, and A.J. Barnes, Many particle approach to excitons in crystals: electron-electron and electron-phonon interactions, J. Mol. Struct. 976, 205–214 (2010),
http://dx.doi.org/10.1016/j.molstruc.2010.03.086
[7] K. Hyeon-Deuk and O.V. Prezhdo, J. Phys.: Condens. Matter 24, 363201 (2012),
http://dx.doi.org/10.1088/0953-8984/24/36/363201
[8] P. Han and G. Bester, First-principles calculation of the electron-phonon interaction in semiconductor nanoclusters, Phys. Rev. B 85, 235422 (2012),
http://dx.doi.org/10.1103/PhysRevB.85.235422
[9] M. Erementchouk, V. Turkowski, and M.N. Leuenberger, Quantum field theory of exciton correlations and entanglement in semiconductor structures, in: Advances in Quantum Field Theory, ed. S. Ketov, Chapter 6, ISBN 978-953-51-0035-5,
http://dx.doi.org/10.5772/37699
[10] A.V. Friesen, A.V. Prozorkevich, S.A. Smolyansky, and M. Bonitz, Nonperturbative kinetics of electron-hole excitations in strong electric field, in: Saratov Fall Meeting 2006: Laser Physics and Photonics, Spectroscopy and Molecular Modeling VII, eds. V.L. Derbov, L.A. Melnikov, and L.M. Babkov, Proc. SPIE 6537, 653707 (2007),
http://dx.doi.org/10.1117/12.754004
[11] S.A. Smolyansky, M. Bonitz, and A.V. Tarakanov, Strong field generalization of the interband transitions kinetics, Phys. Part. Nucl. 41(7), 1075–1078 (2010),
http://dx.doi.org/10.1134/S106377961007021X
[12] S.A. Smolyansky, A.V. Tarakanov, and M. Bonitz, Vacuum particle creation: analogy with the Bloch theory in solid state physics, Contrib. Plasma Phys. 49(7–8), 575–584 (2009),
http://dx.doi.org/10.1002/ctpp.200910058
[13] H. Bruus and K. Flensberg, Introduction to Many-Body Quantum Theory in Condensed Matter Physics (Copenhagen, 2002),
http://ukcatalogue.oup.com/product/9780198566335.do
[14] O. Madelung, Introduction to Solid-State Theory, 1st ed. (Springer, Germany, 1978),
http://www.springer.com/gp/book/9783540604433
[15] F. Schwabl, Advanced Quantum Mechanics, 3rd ed. (Springer, 2005),
http://www.springer.com/physics/quantum+physics/book/978-3-540-85061-8
[16] E. Klotins and G. Zvejnieks, Quantum chemical study of electron-phonon interaction in crystals, Phys. Status Solidi C 10(4), 705–708 (2013),
http://dx.doi.org/10.1002/pssc.201200872
[17] V. Pervushin, V. Skokov, A. Reichel, S. Smolyansky, and A. Prozorkevich, The kinetic description of vacuum particle creation in the oscillator representation, Int. J. Mod. Phys. A 20, 5689–5704 (2005),
http://dx.doi.org/10.1142/S0217751X05028909
[18] S.N. Data, Retarded boson-fermion interaction in atomic systems, J. Chem. Sci. 119(5), 351–356 (2007),
http://www.ias.ac.in/chemsci/Pdf-Sep2007/351.pdf
[19] J.C.R. Bloch, V.A. Mizerny, A.V. Prozorkevich, C.D. Roberts, S.M. Schmidt, S.A. Smolyansky, and D.V. Vinnik, Pair creation: Back reactions and damping, Phys. Rev. D 60, 116011 (1999),
http://dx.doi.org/10.1103/PhysRevD.60.116011