Received 14 May 2014; revised 17 July 2014; accepted 10 December
2014
Veikiant CdSe/ZnS kvantinius
taškus, dengtus merkaptopropionine (MPR) ar tioglikoline (TGR)
rūgštimis, žalia lazerio spinduliuote, ištirtas jų stabilumas
vandeninėje terpėje ir terpėje su jaučio serumo albuminu (JSA).
Iš sugerties bei liuminescencijos matavimų rezultatus nustatyta,
jog baltymo gebėjimas pakeisti tioliais dengtų kvantinių taškų
dangalo struktūrą ir fotoliuminescencijos (FL) intensyvumą
priklauso nuo stabilizuojančių paviršiaus ligandų prigimties.
Kvantiniams taškams, dengtiems TGR, sąveikaujant su JSA
molekulėmis padidėdavo jų FL kvantinis našumas, o
fotoliuminescencija tapdavo stabilesnė, priešingas efektas
gautas su MPR dengtais kvantiniais taškais. Šviesa iš karto po
švitinimo padidindavo TGR dengtų kvantinių taškų
fotoliuminescencijos intensyvumą ir kvantinį našumą, bet
kvantinių taškų, dengtų MPR, spektroskopinių savybių
nepakeisdavo. Terpėje su JSA fotoliuminescencijos padidėjimas
stebimas nepriklausomai nuo kvantinių taškų dengiamojo sluoksnio
prigimties bei stabilumo, o fotoliuminescencija išlieka
santykinai stabilesnė.
References
/ Nuorodos
[1] T. Jamieson, R.
Bakhshi, D. Petrova, R. Pocock, M. Imanib, and A.M. Seifalian,
Biological applications of quantum dots, Biomaterials
28,
4717–4732 (2007),
http://dx.doi.org/10.1016/j.biomaterials.2007.07.014
[2] J.A. Kloefper, S.E. Bradforth, and J.L. Nadeau,
Photophysical properties of biologically compatible CdSe quantum
dot structures, J. Phys. Chem. B
109, 9996–10003 (2005),
http://dx.doi.org/10.1021/jp044581g
[3] A.M. Derfus, W.C.W. Chan, and S.N. Bhatia, Probing the
cytotoxicity of semiconductor quantum dots, Nano Lett.
4(1),
11–18 (2004),
http://dx.doi.org/10.1021/nl0347334
[4] J. Ma, J.Y. Chen, J. Guo, C. Wang, W. Yang, L. Xu, and P.
Wang, Photostability of thiol-capped CdTe quantum dots in living
cells: the effect of photooxidation, Nanotechnology
17,
2083 (2006),
http://dx.doi.org/10.1088/0957-4484/17/9/002
[5] Y. Qu, W. Li, Y. Zhou, X. Liu, L. Zhang, L. Wang, Y.-f. Li,
A. Iida, Z. Tang, Y. Zhao, Z. Chai, and C. Chen, Full assessment
of fate and physiological behavior of quantum dots utilizing
Caenorhabditis elegans as a model organism, Nano Lett.
11,
3174–83 (2011),
http://dx.doi.org/10.1021/nl201391e
[6] K. Susumu, H. Tetsuo Uyeda, I.L. Medintz, T. Pons, J.B.
Delehanty, and H. Mattoussi, Enhancing the stability and
biological functionalities of quantum dots via compact
multifunctional ligands, J. Am. Chem. Soc.
129,
13987–13996 (2007),
http://dx.doi.org/10.1021/ja0749744
[7] W.W. Yu, E. Chang, R. Drezek, and V.L. Colvin, Water-soluble
quantum dots for biomedical applications, Biochem. Biophys. Res.
Commun.
348, 781–786 (2006),
http://dx.doi.org/10.1016/j.bbrc.2006.07.160
[8] J. Aldana, Y.A. Wang, and X.G. Peng, Photochemical
instability of CdSe nanocrystals coated by hydrophilic thiols.
J. Am. Chem. Soc.
123, 8844–8850 (2001),
http://dx.doi.org/10.1021/ja016424q
[9] F. Koberling, A. Mews, and T. Basché, Oxygen-induced
blinking of single CdSe nanocrystals, Adv. Mater.
13(9),
672–676 (2001),
http://dx.doi.org/10.1002/1521-4095(200105)13:9<672::AID-ADMA672>3.0.CO;2-W
[10] V. Biju, R. Kanemoto, Y. Matsumoto, S. Ishii, S. Nakanishi,
T. Itoh, Y. Baba, and M. Ishikawa, Photoinduced
photoluminescence variations of CdSe quantum dots in polymer
solutions, J. Phys. Chem. C
111, 7924–7932 (2007),
http://dx.doi.org/10.1021/jp0713514
[11] S.R. Cordero, P.J. Carson, R.A. Estabrook, G.F. Strouse,
and S.K. Buratto, Photo-activated luminescence of CdSe quantum
dot monolayers, J. Phys. Chem. B
104, 12137–12142
(2000),
http://dx.doi.org/10.1021/jp001771s
[12] D.F. Eaton, Reference materials for fluorescence
measurement, Pure Appl. Chem.
60(7), 1107–1114 (1988),
http://dx.doi.org/10.1351/pac198860071107
[13] F. López Arbeloa, P. Ruiz Ojeda, and I. López Arbeloa,
Flourescence self-quenching of the molecular forms of Rhodamine
B in aqueous and ethanolic solutions, J. Lumin.
44(1–2),
105–112 (1989),
http://dx.doi.org/10.1016/0022-2313(89)90027-6
[14] D. Magde, G.E. Rojas, and P.G. Seybold, Solvent dependence
of the fluorescence lifetimes of xanthene dyes, Photochem.
Photobiol.
70(5), 737–744 (1999),
http://dx.doi.org/10.1111/j.1751-1097.1999.tb08277.x
[15] T. Karstens and K. Kobs, Rhodamine B and rhodamine 101 as
reference substances for fluorescence quantum yield
measurements, J. Phys. Chem.
84(14), 1871–1872 (1980),
http://dx.doi.org/10.1021/j100451a030
[16] M. Daimon and A. Masumura, Measurement of the refractive
index of distilled water from the near-infrared region to the
ultraviolet region, Appl. Opt.
46(18), 3811–3820 (2007),
http://dx.doi.org/10.1364/AO.46.003811
[17] J. Nowakowska,
The Refractive Indices of Ethyl Alcohol
and Water Mixtures, Master’s Theses, Paper 668 (Loyola
University, Chicago, 1939),
http://ecommons.luc.edu/luc_theses/668
[18] J. Aldana, N. Lavelle, Y.J. Wang, and X.G. Peng, Size
dependent dissociation pH of thiolate ligands from cadmium
chalcogenide nanocrystals, J. Am. Chem. Soc.
127,
2496–2504 (2005),
http://dx.doi.org/10.1021/ja047000+
[19] Q. Wang, Y. Kuo, Y. Wang, G. Shin, Ch. Ruengruglikit, and
Q. Huang, Luminescent properties of water-soluble denatured
bovine serum albumin-coated CdTe quantum dots, J. Phys. Chem. B
110, 16860–16866 (2006),
http://dx.doi.org/10.1021/jp062279x
[20] V. Poderys, M. Matulionyte, A. Selskis, and R. Rotomskis,
Interaction of water-soluble CdTe quantum dots with bovine serum
albumin, Nanoscale Res. Lett.
6, 9 (2011),
http://www.nanoscalereslett.com/content/6/1/9
[21] B. Sahoo, M. Goswami, S. Nag, and S. Maiti, Spontaneous
formation of a protein corona prevents the loss of quantum dot
fluorescence in physiological buffers, Chem. Phys. Lett.
445,
217–220 (2007),
http://dx.doi.org/10.1016/j.cplett.2007.07.075
[22] J. Lovr, S. Ju Cho, F.M. Winnik, and D. Maysinger,
Unmodified cadmium telluride quantum dots induce reactive oxygen
species formation leading to multiple organelle damage and cell
death, Chem. Biol.
12, 1227–1234 (2005),
http://dx.doi.org/10.1016/j.chembiol.2005.09.008
[23] M. Matulionyte, V. Poderys, and R. Rotomskis, Influence of
surface coating on CdTe quantum dots stability and interaction
with bovine serum albumin, in:
Proceedings of 8th
International Conference on Medical Physics in the Baltic
States (Kaunas, Lithuania, 2010),
http://alephfiles.rtu.lv/TUA01/000035052_e.pdf
[24] M. Oda, A. Hasegawab, N. Iwamib, K. Nishiurab, N. Andob, A.
Nishiyamab, H. Horiuchib, and T. Tania, Reversible photobluing
of CdSe/ZnS/TOPO nanocrystals, Colloids Surf. B
56,
241–245 (2007),
http://dx.doi.org/10.1016/j.colsurfb.2006.12.012
[25] J. Jasieniak and P. Mulvaney, From Cd-rich to Se-rich – the
manipulation of CdSe nanocrystal surface stoichiometry, J. Am.
Chem. Soc.
129, 2841–2848 (2007),
http://dx.doi.org/10.1021/ja066205a
[26] Y. Wang, Z. Tang, M.A. Correa-Duarte, I. Pastoriza-Santos,
M. Giersig, N.A. Kotov, and L.M. Liz-Marzan, Mechanism of strong
luminescence photoactivation of citrate-stabilized water-soluble
nanoparticles with CdSe cores, J. Phys. Chem. B
108,
15461–15469 (2004),
http://dx.doi.org/10.1021/jp048948t
[27] Y. Wang, Z. Tang, M.A. Correa-Duarte, L.M. Liz-Marzán, and
N.A. Kotov, Multicolor luminescence patterning by
photoactivation of semiconductor nanoparticle films, J. Am.
Chem. Soc.
125, 2830–2831 (2003),
http://dx.doi.org/10.1021/ja029231r
[28] K. Pechstedt, T. Whittle, J. Baumberg, and T. Melvin,
Photoluminescence of colloidal CdSe/ZnS quantum dots: the
critical effect of water, J. Phys. Chem. C
114,
12069–12077 (2010),
http://dx.doi.org/10.1021/jp100415k
[29] J. Silver and W. Ou, Photoactivation of quantum dot
fluorescence following endocytosis, Nano Lett.
5(7),
1445–1449 (2005),
http://dx.doi.org/10.1021/nl050808n
[30] S. Patra and A. Samanta, A fluorescence correlation
spectroscopy, steady-state, and time-resolved fluorescence study
of the modulation of photophysical properties of
mercaptopropionic acid capped CdTe quantum dots upon exposure to
light, J. Phys. Chem. C
117, 23313–23321 (2013),
http://dx.doi.org/10.1021/jp407130e
[31] H. Bao, Y. Gong, Z. Li, and M. Gao, Enhancement effect of
illumination on the photoluminescence of water-soluble CdTe
nanocrystals: toward highly fluorescent CdTe/CdS core-shell
structure, Chem. Mater.
16, 3853–3869 (2004),
http://dx.doi.org/10.1021/cm049172b
[32] M. Jones, J. Nedeljkovic, R.J. Ellingson, A.J. Nozik, and
G. Rumbles, Photoenhancement of luminescence in colloidal CdSe
quantum dot solutions, J. Phys. Chem. B
107, 11346–11352
(2003),
http://dx.doi.org/10.1021/jp035598m
[33] K. Sato, S. Kojima, S. Hattori, T. Chiba, K. Ueda-Sarson,
T. Torimoto, Y. Tachibana, and S. Kuwabata, Controlling surface
reactions of CdS nanocrystals: photoluminescence activation,
photoetching and photostability under light irradiation,
Nanotechnology
18, 465702 (2007),
http://dx.doi.org/10.1088/0957-4484/18/46/465702