Received 12 September 2014; revised 2 October 2014; accepted 10
December 2014
Darbe nagrinėjamos atomo
pagrindinės būsenos ir su ja susijusių dydžių, taip pat
konfigūracijų, turinčių du atvirus elektronų sluoksnius su tuo
pačiu orbitiniu kvantiniu skaičiumi, bei Ožė šuolių maksimalių
amplitudžių papildomos simetrijos savybės. Pateiktos aukščiausio
multipletiškumo termų, pagrindinio ir aukščiausiojo lygmenų
energijos išraiškos esant vienam atviram sluoksniui. Nagrinėjama
konfigūracijos n1lN1n2lN2
būsenų klasifikacija, naudojantis jų kilme izoelektronėje
konfigūracijų sekoje, ir tokios banginių funkcijų bazės savybės.
Aptariamas atrankos taisyklių egzistavimas maksimalioms Ožė
šuolių amplitudėms.
References
/ Nuorodos
[1] A.P. Jucys, I.B.
Levinson, and V.V. Vanagas,
Mathematical Apparatus of the
Angular Momentum Theory (Gordon and Breach, New York,
1964),
http://www.amazon.co.uk/Mathematical-Apparatus-Theory-Angular-Momentum/dp/B000KADEOE/
[2] E.U. Condon and G.H. Shortley,
The Theory of
Atomic Spectra (Cambridge University Press, Cambridge,
1935),
http://www.amazon.co.uk/Theory-Atomic-Spectra-E-Condon/dp/0521047137/
[3] A.R. Edmonds,
Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, 1957),
http://www.amazon.co.uk/Angular-Momentum-Quantum-Mechanics-Investigations/dp/0691025894/
[4a] G. Racah, Theory of complex spectra, I. Phys. Rev.
61(3–4),
186–197 (1941),
http://dx.doi.org/10.1103/PhysRev.61.186
[4b] G. Racah, Theory of complex spectra, II. Phys. Rev.
62(3–4),
438–462 (1942),
http://dx.doi.org/10.1103/PhysRev.62.438
[4c] G. Racah, Theory of complex spectra, III. Phys. Rev.
63(3–4),
367–382 (1943),
http://dx.doi.org/10.1103/PhysRev.63.367
[5] G. Racah, Theory of complex spectra. IV Phys. Rev.
76(9),
1352–1365 (1949),
http://dx.doi.org/10.1103/PhysRev.76.1352
[6] R.D. Cowan,
The Theory of Atomic Structure and Spectra
(University of California Press, Berkeley, CA, 1981),
http://www.amazon.co.uk/Theory-Structure-Spectra-Applied-Sciences/dp/0520038215/
[7] Z.B. Rudzikas,
Theoretical Atomic Spectroscopy
(Cambridge University, 2007),
http://www.cambridge.org/lt/academic/subjects/physics/atomic-physics-molecular-physics-and-chemical-physics/theoretical-atomic-spectroscopy
[8] B. R. Judd,
Second Quantization and Atomic Spectroscopy
(The Johns Hopkins University Press, Baltimore, 1967),
http://www.amazon.co.uk/Second-Quantization-Spectroscopy-Memorial-Lectures/dp/0801803225/
[9] L.N. Labzovskiy,
Theory of Atomic Structure of
Electronic Shells (Nauka, Moscow, 1986) [in Russian]
[10] B.R. Judd, Lie groups for atomic shells, Phys. Rept.
285(1),
1–76 (1997),
http://dx.doi.org/10.1016/S0370-1573(96)00039-7
[11] B.G. Wybourne,
Symmetry Principles and Atomic
Spectroscopy (Wiley, New York, 1970),
http://www.amazon.co.uk/Symmetry-Principles-Atomic-Spectroscopy-Wybourne/dp/0471965081/
[12] P. Bogdanovich, R. Karazija, and J. Boruta, The
orthogonality of wave functions to the functions of
configurations lower-lying energetically and the validity of
Brillouin's theorem in the case of electronic configuration
n1lN1n2lN2,
Litov. Fiz. Sb. – Liet. fiz. rink.
20(2), 16–24 (1980)
[in Russian]
[13] J. Kaniauskas and R. Karazija, Algebraic expressions of
energy for terms of the highest multiplicity and related ones,
as well as for ground and highest energy levels, Litov. Fiz. Sb.
– Liet. fiz. rink.
25(2), 31–41 (1985) [in Russian]
[14] R.I. Karazija and L.S. Rudzikaitė, Symmetry of electronic
shell in its lowest state and the interval rules for binding
energines, Opt. Spektrosk.
68(3), 487–492 (1990) [in
Russian]
[15] R. Karazija, A. Udris, A. Kynienė, and S. Kučas, On the
symmetry with respect to a quarter of the electronic shell for
the intensities of the strongest lines in lanthanide spectra, J.
Phys. B
29(11), L405–L409 (1996),
http://dx.doi.org/10.1088/0953-4075/29/11/003
[16] R. Karazija and A. Kynienė, Symmetry of some properties of
lanthanides and actinides with respect to a quarter of the f
N
shell, J. Phys. Chem. A
102(6), 897–903 (1998),
http://dx.doi.org/10.1021/jp9727409
[17] P. Bogdanovich, A. Kynienė, R. Karazija, R. Karpuškienė,
and G. Gaigalas, Additional symmetry for the electronic shell in
its ground state and many-electron effects, Eur. Phys. J. D
11(2),
175–183 (2000),
http://dx.doi.org/10.1007/s100530070081
[18] A. Kynienė and R. Karazija, Maximal values of the Auger
amplitudes and propensity rules for their quantum numbers, Phys.
Scr.
70(5), 288–294 (2004),
http://dx.doi.org/10.1088/0031-8949/70/5/005
[19] J.C. Slater,
Quantum Theory of Molecules and Solids,
Vol. 4: The Self-Consistent Field for Molecules and Solids
(McGraw-Hill, New York, 1974),
http://www.amazon.co.uk/Quantum-Theory-Molecules-Solids-Applied/dp/0070580383/
[20] B.R. Judd, Atomic shell theory recast, Phys. Rev.
162(1),
28–37 (1967),
http://dx.doi.org/10.1103/PhysRev.162.28
[21] Z.B. Rudzikas and J.M. Kaniauskas,
Quasispin and
Isospin in the Theory of Atom (Mokslas Publishers,
Vilnius, 1984) [in Russian]
[22] W.C. Martin, Some aspects of the energy-level structures of
lanthanide atoms and ions, Opt. Pura Appl.
5, 181–191
(1972)
[23] G.V. Ionova, V.G. Vokhmin, and V.I. Spicyn,
Regularities
in Properties of the Lanthanides and Actinides (Nauka,
Moscow, 1990) [in Russian]
[24] A. Kramida, Yu. Ralchenko, J. Reader, and
NIST
ASD Team (2013), NIST Atomic Spectra Database (ver. 5.1)
[online]. Available:
http://physics.nist.gov/asd
[2014, March 23]. National Institute of Standards and
Technology, Gaithersburg, MD
[25] J.F. Wyart, Analysis of lanthanide atomic spectra: Present
state and trends, J. Opt. Soc. Am.
68(2), 197–205
(1978),
http://dx.doi.org/10.1364/JOSA.68.000197
[26] G.V. Ionova, Periodicity in the variation of properties for
series of d and f elements, Uspekhi Khimii
59(1), 66–85
(1990) [in Russian],
http://dx.doi.org/10.1070/RC1990v059n01ABEH003508
[27] V.I. Spicyn, V.G. Vokhmin, and G.V. Ionova, Interval rules
for ionization energies and oxidation potentials of f-elements,
Doklady AN SSSR
294(3), 650–653 (1987) [in Russian]
[28] Ch. Froese Fisher, Hartree-Fock calculations for atoms with
inner-shell vacancies, Phys. Rev. Lett.
38(19),
1075–1076 (1977),
http://dx.doi.org/10.1103/PhysRevLett.38.1075
[29] Ch. Froese Fisher, Brillouin's theorem for excited
nlqnlq'
configurations. J. Phys. B: At. Mol. Opt. Phys.
6(10),
1933–1941 (1973),
http://dx.doi.org/10.1088/0022-3700/6/10/009
[30] V. Šimonis, J. Kaniauskas, and Z. Rudzikas, Isospin basis
for electronic configurations
n1lN1n2lN2,
Litov. Fiz. Sb. – Liet. fiz. rink.
22(4), 3–15 (1982)
[in Russian]
[31] R. Karazija,
Sums of Atomic Quantities and Mean
Characteristics of Spectra (Mokslas, Vilnius, 1991) [in
Russian]